Probability measure: prove or disprove

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Measure Probability
Click For Summary
SUMMARY

This discussion centers on the properties of a probability measure $Q$ defined over a $\sigma$-algebra $\mathcal{B}$. The participants analyze several statements regarding the relationships between sets $A$ and $B$, concluding that the statement $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$ does not hold in general. They demonstrate this by testing specific cases, such as $A=\emptyset$ and $B=\Omega$, leading to contradictions. Additionally, they confirm that $Q(\emptyset)=0$ is a necessary condition for probability measures.

PREREQUISITES
  • Understanding of probability measures and their properties
  • Familiarity with $\sigma$-algebras and set operations
  • Knowledge of De Morgan's laws in set theory
  • Basic mathematical proof techniques and logical reasoning
NEXT STEPS
  • Study the axioms of probability measures in detail
  • Learn about $\sigma$-algebras and their significance in probability theory
  • Explore the implications of De Morgan's laws in probability contexts
  • Investigate counterexamples in probability theory to solidify understanding
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory who seek to deepen their understanding of probability measures and their properties.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$
I have done the following :

  1. Let $\Omega$ be the universal set.
    We suppose that the statement is true.
    For $A=\emptyset$ and $B=\Omega$ be we get the following:
    \begin{align*}&Q(\emptyset\cup \Omega)=1-Q(\overline{\emptyset}\cup \overline{\Omega}) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega\cup \emptyset) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega) \\ & \Rightarrow 2Q(\Omega)=1 \\ & \Rightarrow Q(\Omega)=\frac{1}{2} \\ & \Rightarrow 1=\frac{1}{2}\end{align*}
    So, the statement is in general not true.

    Is everything correct?
    $$$$
  2. Let $S\in \mathcal{B}$.
    We have that $\Omega = S\cup \overline{S}$. Then $Q(\Omega)=Q(S\cup \overline{S})$. Since $Q$ is a probability measure, we get that $Q(\Omega)=1$ and $Q(S\cup \overline{S})=Q(S)+Q(\overline{S})$.
    Therefore, we get that:
    $$Q(\Omega)=Q(S\cup \overline{S}) \Rightarrow 1=Q(S)+Q(\overline{S}) \Rightarrow Q(\overline{S})=1-Q(S)$$

    By De Morgan’s laws we have that $\overline{A\cup B}=\overline{A}\cap \overline{B}$.

    We have that $Q(\overline{A\cup B})=1-Q(A\cup B) \Rightarrow Q(\overline{A}\cap \overline{B})=1-Q(A\cup B) \Rightarrow 1-Q(\overline{A}\cap \overline{B})=Q(A\cup B)$.

    So, we have to check if $Q(A\cup B)=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$, right? How could we check that?

    $$$$
  3. We have that $Q(\overline{A})=1-Q(A)$ and $Q(\overline{B})=1-Q(B)$.

    So, we get:
    $$1-Q(\overline{A})-Q(\overline{B})=1-(1-Q(A))-(1-Q(B))=1-1+Q(A)-1+Q(B)=Q(A)-1+Q(B)$$
    So, the statement is true.

    Is everything correct?

    $$$$
  4. Could you give me a hint for this statement?
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$

Hey mathmari!

1. All correct. (Nod)

2. How about checking for, say, $A=B=\Omega$?

3. Good.

4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)
 
I like Serena said:
2. How about checking for, say, $A=B=\Omega$?

For $A=B=\Omega$ we get the following:

The left side is equal to $1-Q(\overline{\Omega}\cap \overline{\Omega})=1-Q(\emptyset\cap \emptyset)=1-Q(\emptyset)=1-0=1$.

The right side is equal to $Q(\overline{\Omega})+Q(\overline{\Omega})+Q(\overline{\Omega}\cup \overline{\Omega}) =Q(\emptyset)+Q(\emptyset)+Q(\emptyset\cup \emptyset)=0+0+Q(\emptyset)=0$.

Therefore, the statement does not hold in general, right? (Wondering)
I like Serena said:
4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)

So, we have to prove that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, i.e. that $A= \emptyset \Rightarrow Q(A)=0$, i.e. $Q(\emptyset )=0$, right? (Wondering)

Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.
So, we get the following:
$$Q(\Omega)=Q(\Omega\cup \emptyset)=Q(\Omega)+Q(\emptyset) \Rightarrow 1=1+Q(\emptyset) \Rightarrow Q(\emptyset)=0$$
right?

So, since it holds that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, it follows that $Q(A)\neq 0\Rightarrow A\neq \emptyset$, right? (Wondering)
 
mathmari said:
Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.

We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)
 
I like Serena said:
We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)

Great! Thank you! (Yes)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
688