Probability measure: prove or disprove

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Measure Probability
Click For Summary

Discussion Overview

The discussion revolves around the properties of a probability measure \( Q \) defined over a \( \sigma \)-algebra \( \mathcal{B} \). Participants explore various statements regarding the relationships between sets \( A \) and \( B \) within this framework, aiming to prove or disprove several claims related to union and intersection of sets, as well as implications regarding empty sets.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant proposes several statements about a probability measure \( Q \) and attempts to prove or disprove them, including relationships involving unions and intersections of sets.
  • Another participant agrees with the correctness of the initial claims and suggests testing the case where \( A = B = \Omega \) to further investigate the validity of the statements.
  • A participant calculates the left and right sides of the proposed statements for \( A = B = \Omega \) and concludes that the statements do not hold in general.
  • There is a discussion about proving the contrapositive of a statement regarding the relationship between non-empty sets and their measures, specifically that \( A = \emptyset \) implies \( Q(A) = 0 \).
  • One participant asserts that the additivity of measures requires the sets involved to be disjoint, which is noted as an additional constraint.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of some calculations and the need for additional constraints regarding disjoint sets. However, there remains disagreement about the validity of the initial statements, as some participants find them not to hold in general.

Contextual Notes

Participants note that the additivity of measures applies only when the sets are disjoint, which may affect the validity of some proposed statements. The discussion also highlights the importance of specific cases in testing the generality of the claims made about the probability measure.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$
I have done the following :

  1. Let $\Omega$ be the universal set.
    We suppose that the statement is true.
    For $A=\emptyset$ and $B=\Omega$ be we get the following:
    \begin{align*}&Q(\emptyset\cup \Omega)=1-Q(\overline{\emptyset}\cup \overline{\Omega}) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega\cup \emptyset) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega) \\ & \Rightarrow 2Q(\Omega)=1 \\ & \Rightarrow Q(\Omega)=\frac{1}{2} \\ & \Rightarrow 1=\frac{1}{2}\end{align*}
    So, the statement is in general not true.

    Is everything correct?
    $$$$
  2. Let $S\in \mathcal{B}$.
    We have that $\Omega = S\cup \overline{S}$. Then $Q(\Omega)=Q(S\cup \overline{S})$. Since $Q$ is a probability measure, we get that $Q(\Omega)=1$ and $Q(S\cup \overline{S})=Q(S)+Q(\overline{S})$.
    Therefore, we get that:
    $$Q(\Omega)=Q(S\cup \overline{S}) \Rightarrow 1=Q(S)+Q(\overline{S}) \Rightarrow Q(\overline{S})=1-Q(S)$$

    By De Morgan’s laws we have that $\overline{A\cup B}=\overline{A}\cap \overline{B}$.

    We have that $Q(\overline{A\cup B})=1-Q(A\cup B) \Rightarrow Q(\overline{A}\cap \overline{B})=1-Q(A\cup B) \Rightarrow 1-Q(\overline{A}\cap \overline{B})=Q(A\cup B)$.

    So, we have to check if $Q(A\cup B)=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$, right? How could we check that?

    $$$$
  3. We have that $Q(\overline{A})=1-Q(A)$ and $Q(\overline{B})=1-Q(B)$.

    So, we get:
    $$1-Q(\overline{A})-Q(\overline{B})=1-(1-Q(A))-(1-Q(B))=1-1+Q(A)-1+Q(B)=Q(A)-1+Q(B)$$
    So, the statement is true.

    Is everything correct?

    $$$$
  4. Could you give me a hint for this statement?
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$

Hey mathmari!

1. All correct. (Nod)

2. How about checking for, say, $A=B=\Omega$?

3. Good.

4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)
 
I like Serena said:
2. How about checking for, say, $A=B=\Omega$?

For $A=B=\Omega$ we get the following:

The left side is equal to $1-Q(\overline{\Omega}\cap \overline{\Omega})=1-Q(\emptyset\cap \emptyset)=1-Q(\emptyset)=1-0=1$.

The right side is equal to $Q(\overline{\Omega})+Q(\overline{\Omega})+Q(\overline{\Omega}\cup \overline{\Omega}) =Q(\emptyset)+Q(\emptyset)+Q(\emptyset\cup \emptyset)=0+0+Q(\emptyset)=0$.

Therefore, the statement does not hold in general, right? (Wondering)
I like Serena said:
4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)

So, we have to prove that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, i.e. that $A= \emptyset \Rightarrow Q(A)=0$, i.e. $Q(\emptyset )=0$, right? (Wondering)

Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.
So, we get the following:
$$Q(\Omega)=Q(\Omega\cup \emptyset)=Q(\Omega)+Q(\emptyset) \Rightarrow 1=1+Q(\emptyset) \Rightarrow Q(\emptyset)=0$$
right?

So, since it holds that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, it follows that $Q(A)\neq 0\Rightarrow A\neq \emptyset$, right? (Wondering)
 
mathmari said:
Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.

We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)
 
I like Serena said:
We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)

Great! Thank you! (Yes)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
707