MHB Probability measure: prove or disprove

Click For Summary
The discussion revolves around proving or disproving several properties of a probability measure \( Q \) over a \( \sigma \)-algebra \( \mathcal{B} \). Initial attempts to validate the statements reveal contradictions, particularly when testing with specific sets like \( A = \emptyset \) and \( B = \Omega \), leading to the conclusion that some statements do not hold in general. The participants explore the implications of the properties, confirming that \( Q(\emptyset) = 0 \) is valid under the definition of a probability measure. The conversation emphasizes the importance of disjoint sets in the context of probability measures. Overall, the exploration highlights the complexities and nuances in the properties of probability measures.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$
I have done the following :

  1. Let $\Omega$ be the universal set.
    We suppose that the statement is true.
    For $A=\emptyset$ and $B=\Omega$ be we get the following:
    \begin{align*}&Q(\emptyset\cup \Omega)=1-Q(\overline{\emptyset}\cup \overline{\Omega}) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega\cup \emptyset) \\ & \Rightarrow Q(\Omega)=1-Q(\Omega) \\ & \Rightarrow 2Q(\Omega)=1 \\ & \Rightarrow Q(\Omega)=\frac{1}{2} \\ & \Rightarrow 1=\frac{1}{2}\end{align*}
    So, the statement is in general not true.

    Is everything correct?
    $$$$
  2. Let $S\in \mathcal{B}$.
    We have that $\Omega = S\cup \overline{S}$. Then $Q(\Omega)=Q(S\cup \overline{S})$. Since $Q$ is a probability measure, we get that $Q(\Omega)=1$ and $Q(S\cup \overline{S})=Q(S)+Q(\overline{S})$.
    Therefore, we get that:
    $$Q(\Omega)=Q(S\cup \overline{S}) \Rightarrow 1=Q(S)+Q(\overline{S}) \Rightarrow Q(\overline{S})=1-Q(S)$$

    By De Morgan’s laws we have that $\overline{A\cup B}=\overline{A}\cap \overline{B}$.

    We have that $Q(\overline{A\cup B})=1-Q(A\cup B) \Rightarrow Q(\overline{A}\cap \overline{B})=1-Q(A\cup B) \Rightarrow 1-Q(\overline{A}\cap \overline{B})=Q(A\cup B)$.

    So, we have to check if $Q(A\cup B)=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$, right? How could we check that?

    $$$$
  3. We have that $Q(\overline{A})=1-Q(A)$ and $Q(\overline{B})=1-Q(B)$.

    So, we get:
    $$1-Q(\overline{A})-Q(\overline{B})=1-(1-Q(A))-(1-Q(B))=1-1+Q(A)-1+Q(B)=Q(A)-1+Q(B)$$
    So, the statement is true.

    Is everything correct?

    $$$$
  4. Could you give me a hint for this statement?
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to prove or disprove that for a probability measure $Q$ over a $\sigma$-algebra $\mathcal{B}$ with $A,B\in \mathcal{B}$ the following hold:
  1. $Q(A\cup B)=1-Q(\overline{A}\cup \overline{B})$
  2. $1-Q(\overline{A}\cap \overline{B})=Q(\overline{A})+Q(\overline{B})+Q(\overline{A}\cup \overline{B})$
  3. $1-Q(\overline{A})-Q(\overline{B})=Q(A)-1+Q(B)$
  4. $Q(A)\neq \emptyset\Rightarrow A\neq \emptyset$

Hey mathmari!

1. All correct. (Nod)

2. How about checking for, say, $A=B=\Omega$?

3. Good.

4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)
 
I like Serena said:
2. How about checking for, say, $A=B=\Omega$?

For $A=B=\Omega$ we get the following:

The left side is equal to $1-Q(\overline{\Omega}\cap \overline{\Omega})=1-Q(\emptyset\cap \emptyset)=1-Q(\emptyset)=1-0=1$.

The right side is equal to $Q(\overline{\Omega})+Q(\overline{\Omega})+Q(\overline{\Omega}\cup \overline{\Omega}) =Q(\emptyset)+Q(\emptyset)+Q(\emptyset\cup \emptyset)=0+0+Q(\emptyset)=0$.

Therefore, the statement does not hold in general, right? (Wondering)
I like Serena said:
4. The statement $S\Rightarrow T$ is true if and only if $\lnot T \Rightarrow \lnot S$.
Can we prove the latter? (Wondering)

So, we have to prove that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, i.e. that $A= \emptyset \Rightarrow Q(A)=0$, i.e. $Q(\emptyset )=0$, right? (Wondering)

Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.
So, we get the following:
$$Q(\Omega)=Q(\Omega\cup \emptyset)=Q(\Omega)+Q(\emptyset) \Rightarrow 1=1+Q(\emptyset) \Rightarrow Q(\emptyset)=0$$
right?

So, since it holds that $\lnot A\neq \emptyset \Rightarrow \lnot Q(A)\neq 0$, it follows that $Q(A)\neq 0\Rightarrow A\neq \emptyset$, right? (Wondering)
 
mathmari said:
Since $Q$ is a probability measure, we have that $Q(\Omega)=1$ and that $Q(S_1\cup S_2)=Q(S_1)+Q(S_2)$, for $S_1, S_2\in \mathcal{B}$.

We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)
 
I like Serena said:
We have the additional constraint that $S_1$ and $S_2$ must be disjoint. (Nerd)

Otherwise everything is correct. (Mmm)

Great! Thank you! (Yes)
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...