Undergrad Probability when measuring a local observable

Click For Summary
The discussion focuses on calculating the probability of measuring a local observable using a density operator for pure states. The user presents an equation for the density operator and attempts to derive the probability expression but finds discrepancies in the results. They express uncertainty about their approach and seek guidance on aligning their findings with the original equation. A suggestion is made to start from the definition of the expectation value of an operator with respect to a density operator to clarify the calculations. The conversation highlights the complexities involved in quantum probability calculations.
Yan Campo
Messages
2
Reaction score
0
TL;DR
I need to show that the probability when measuring a local $$O^{a}$$ observable is $$Pr(o_{j}^{(a)})=Tr(\rho_{ab}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))$$
I have information that $$\rho_{ab}=\sum_{j}p_{j}\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}$$ and $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{ab}}\bra{\Psi_{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2})) \text{.}$$
I started by representing the density operator for pure states, such that $$\rho = \ket{\Psi^{ab}}\bra{\Psi^{ab}}\text{.}$$
Substituting directly into the equation that was given for the probability I arrive at a result $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))\text{.}$$
I believe this is not right, as I have not found a way to make this equal to what was asked.
Any clue what should I do? Any help is welcome.
 
Last edited:
Physics news on Phys.org
How about starting from the definition of the expectation value of an operator given a density operator?
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 89 ·
3
Replies
89
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K