I Probability when measuring a local observable

Yan Campo
Messages
2
Reaction score
0
TL;DR Summary
I need to show that the probability when measuring a local $$O^{a}$$ observable is $$Pr(o_{j}^{(a)})=Tr(\rho_{ab}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))$$
I have information that $$\rho_{ab}=\sum_{j}p_{j}\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}$$ and $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{ab}}\bra{\Psi_{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2})) \text{.}$$
I started by representing the density operator for pure states, such that $$\rho = \ket{\Psi^{ab}}\bra{\Psi^{ab}}\text{.}$$
Substituting directly into the equation that was given for the probability I arrive at a result $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))\text{.}$$
I believe this is not right, as I have not found a way to make this equal to what was asked.
Any clue what should I do? Any help is welcome.
 
Last edited:
Physics news on Phys.org
How about starting from the definition of the expectation value of an operator given a density operator?
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top