A Problem evaluating an anticommutator in supersymmetric quantum mechanics

Gleeson
Messages
30
Reaction score
4
I am trying to reproduce the results of a certain paper here. In particular, I'm trying to verify their eqn 5.31.

The setup is N = 4 gauge quantum mechanics, obtained by the dimensional reduction of N = 1 gauge theory in 4 dimensions. ##\sigma^i## denotes the ith pauli matrix. ##\lambda_{A \alpha}## is a two component complex fermion (or rather its ##\alpha##th component). ##A## labels the generators of the gauge group.

\begin{align*}
H &= \frac{1}{2}\pi^m_A \pi^m_A + \frac{1}{4} g^2 (f_{ABC}\phi^m_B \phi^n_C)^2 + igf_{ABC}\bar{\lambda}_A \sigma^m\phi^m_B \lambda_C \\
Q_{\alpha} &= (\sigma^m \lambda_A)_{\alpha}(\pi^m_A - iW^m_A)\\
\bar{Q}_{\beta} &= (\bar{\lambda}_B\sigma^n)_{\beta}(\pi^n_B + iW^n_B)\\
W&= \frac{1}{6}g f_{ABC} \epsilon_{mnp}\phi^m_A \phi^n_B \phi^p_C \\
W^m_A &= \frac{\partial W}{\partial \phi^m_A} \\
[\phi^m_A, \pi^n_B] &= i \delta_{AB}\delta^{mn} \\
\{\lambda_{A \alpha}, \bar{\lambda}_{B \beta} \} &= \delta_{AB} \delta_{\alpha \beta}\\
G_A &= f_{ABC}(\phi^m_B\pi^m_C - i\bar{\lambda}_B \lambda_C).
\end{align*}

It is claimed that

\begin{align*}
\{Q_{\alpha}, \bar{Q}_{\beta}\} &= 2 \delta_{\alpha \beta}H - 2g(\sigma^m)_{\alpha \beta} \phi^m_A G_A
\end{align*}

This can also be written as

\begin{align}
\{Q_{\alpha}, \bar{Q}_{\beta}\} &= \delta_{\alpha \beta}(\pi^m_A \pi^m_A + \frac{1}{2} g^2 (f_{ABC}\phi^m_B \phi^n_C)^2 + i2gf_{ABC}\bar{\lambda}_A \sigma^m\phi^m_B \lambda_C) - 2g(\sigma^m)_{\alpha \beta} \phi^m_A f_{ABC}(\phi^m_B\pi^m_C - i\bar{\lambda}_B \lambda_C).
\end{align}

I have spent many hours trying to confirm this, but unable so far to do so.

\begin{align*}
\{Q_{\alpha}, \bar{Q}_{\beta}\} &= \{(\sigma^m \lambda_A)_{\alpha}(\pi^m_A - iW^m_A) (\bar{\lambda}_B\sigma^n )_{\beta}(\pi^n_B + iW^n_B)\}\\
&=(\sigma^m_{\alpha \theta}\lambda_{A \theta})( \bar{\lambda}_{B \gamma}\sigma^n_{\gamma \beta})[\pi^m_A \pi^n_B + W^{n m}_{BA} + iW^n_B\pi^m_A - i W^m_A \pi^n_B + W^m_A W^n_B] \\
&+( \bar{\lambda}_{B \gamma}\sigma^n_{\gamma \beta})(\sigma^m_{\alpha \theta}\lambda_{A \theta})[\pi^n_B \pi^m_A - W^{m n}_{AB} - iW^m_A \pi^n_B + iW^n_B \pi^m_A + W^n_B W^m_A] \\
&= (\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})(\lambda_{A \theta} \bar{\lambda}_{B \gamma}) [\pi^m_A \pi^n_B + W^{n m}_{BA} + iW^n_B\pi^m_A - i W^m_A \pi^n_B + W^m_A W^n_B] \\
&+ (\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})( \bar{\lambda}_{B \gamma}\lambda_{A \theta})[\pi^n_B \pi^m_A - W^{m n}_{AB} - iW^m_A \pi^n_B + iW^n_B \pi^m_A + W^n_B W^m_A] \\
&= (\sigma^m_{\alpha \theta}\sigma^n_{\theta \beta})[\pi^m_A \pi^n_A + iW^n_A\pi^m_A - i W^m_A \pi^n_A + W^m_A W^n_A] \\
&+ (\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})[( \lambda_{A \theta}\bar{\lambda}_{B \gamma})-( \bar{\lambda}_{B \gamma}\lambda_{A \theta})]W^{m n}_{AB}\\
&= (\delta_{mn} \delta_{\alpha \beta} + i \epsilon_{mnp}\sigma^p_{\alpha \beta})[\pi^m_A \pi^n_A + iW^n_A\pi^m_A - i W^m_A \pi^n_A + W^m_A W^n_A] \\
&- 2(\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})( \bar{\lambda}_{B \gamma}\lambda_{A \theta})W^{m n}_{AB}\\
&= \delta_{\alpha \beta}(\pi^m_A \pi^m_A + W^m_AW^m_A) + 2\epsilon_{mnp}\sigma^p_{\alpha \beta} W^m_A \pi^n_A - 2(\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})( \bar{\lambda}_{B \gamma}\lambda_{A \theta})W^{m n}_{AB}\\
&=\delta_{\alpha \beta}(\pi^m_A \pi^m_A + \frac{1}{2} g^2 (f_{ABC}\phi^m_B \phi^n_C)^2) +g \epsilon _{mrs}f_{ABC}\phi^r_B \phi^s_C\epsilon_{mnp}\sigma^p_{\alpha \beta} W^m_A \pi^n_A - 2(\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})( \bar{\lambda}_{B \gamma}\lambda_{A \theta})W^{m n}_{AB}\\
&= \delta_{\alpha \beta}(\pi^m_A \pi^m_A + \frac{1}{2} g^2 (f_{ABC}\phi^m_B \phi^n_C)^2) - 2g(\sigma^m)_{\alpha \beta} \phi^m_A f_{ABC}\phi^m_B\pi^m_C - 2(\sigma^m_{\alpha \theta}\sigma^n_{\gamma \beta})( \bar{\lambda}_{B \gamma}\lambda_{A \theta})g \epsilon_{mnp}f_{ABC}\phi^p_C.
\end{align*}

The first three terms are correct. But the fourth term is wrong (it should instead be two different terms above). I have spent many hours on this. I think I must have some conceptual misunderstanding about these sorts of calculations, because I can't do it. I am hoping someone can help me out and clarify what I'm doing wrong please.
 
Physics news on Phys.org
So I think I have reduced the above to trying to conclude that:

$$
\sigma^{k \ \beta}_{\alpha} \delta_{\theta}^{\gamma} - \sigma^{k \ \gamma}_{\theta}\delta^{\beta}_{\alpha} = i \epsilon_{ijk}\sigma^{i \ \gamma}_{\alpha} \sigma^{j \ \beta}_{\theta}.
$$

If anyone has any suggestions, it would be appreciated.
 
I would try dropping in a commutator of Pauli matrices for ##\epsilon_{ijk}\sigma^{i \gamma}_{\alpha}## and see if you can get Kronecker's on the left hand side from products of the same Pauli matrices.
 
Gleeson said:
So I think I have reduced the above to trying to conclude that:

$$
\sigma^{k \ \beta}_{\alpha} \delta_{\theta}^{\gamma} - \sigma^{k \ \gamma}_{\theta}\delta^{\beta}_{\alpha} = i \epsilon_{ijk}\sigma^{i \ \gamma}_{\alpha} \sigma^{j \ \beta}_{\theta}.
$$

If anyone has any suggestions, it would be appreciated.
This should be
$$
\sigma^{k \ \gamma}_{\theta}\delta^{\beta}_{\alpha} - \sigma^{k \ \beta}_{\alpha} \delta_{\theta}^{\gamma} = i \epsilon_{ijk}\sigma^{i \ \gamma}_{\alpha} \sigma^{j \ \beta}_{\theta}.
$$.

Thanks for the suggestion, but I still couldn't show the two sides to be equal. I have checked various contractions, and they seem to be consistent at least.

If anyone else can see how to solve this, or to point out a mistake, please let me know.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top