1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

E+e- -> gamma f0 -> gamma pi0 pi0 cross section with VMD

  1. Jun 30, 2013 #1
    e+e- --> gamma f0 --> gamma pi0 pi0 cross section with VMD

    1. The problem statement, all variables and given/known data

    Find the cross-section of ##e^+e^- \to \gamma f_0(980) \to \gamma \pi^0 \pi^0## using the vector meson dominance model.

    2. Relevant equations

    Some Feynman's rules:

    The photon propagator is [itex] -i \frac{g_{\mu\nu}}{q^2} [/itex].
    The propagator of ##\varphi##-meson is ##-i \frac{g_{\mu\nu} - \frac{q_\mu q_\nu}{m_\varphi^2}}{q^2 - m_\varphi^2 + i m_\phi \Gamma_\varphi}##, ##\Gamma_\varphi## - the particle width .
    The ##\gamma \varphi##-vertex is ##-i e \frac{m_\varphi^2}{g_\varphi}##.
    ##g_{\varphi \omega f_0}## is the ##\varphi \omega f_0##-vertex constant.

    3. The attempt at a solution
    The effective Lagrangian is
    [tex]
    \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{em} + \mathcal{L}_{str},
    [/tex]
    where
    [tex]
    \mathcal{L}_{str} = g_{\varphi \omega f_0} {F_\varphi}^{\alpha \beta} {F_\omega}^{\mu \nu} \varepsilon_{\alpha \beta \mu \nu} f_0 + g_{f_0 \pi^0 \pi^0} f_0 \pi \pi,
    [/tex]
    [tex]
    \mathcal{L}_{em} = -e \frac{{m_\varphi}^2}{g_\varphi} \Phi^\mu A_\mu -e \frac{{m_\omega}^2}{g_\omega} \Omega^\mu A_\mu.
    [/tex]
    ## \Phi^\mu, \Omega^\mu, A_\mu, f_0, \pi ## - ##\varphi##, ##\omega##, photon, ##f_0##, ##\pi^0## fields.

    After that I try to write the matrix element for the ##e^+e^- \to \gamma f_0(980) \to \gamma \pi^0 \pi^0## diagram. There is my trouble.
    [tex]
    i M = \bar{v} (-i e \gamma_\mu ) u \cdot
    \left(-i \frac{g^{\mu \nu}}{q^2} \right)
    \left( -ie \frac{m_\varphi^2}{g_\varphi}\right)
    \left( -i \right) \frac{g_{\nu\alpha} - \frac{q_\nu q_\alpha}{m_\varphi^2}}{q^2 - m_\varphi^2 + i m_\varphi \Gamma_\varphi} g_{\varphi \omega f_0}
    \left( -i \right) \frac{g^{\alpha \beta} - \frac{k^\alpha k^\beta}{m_\omega^2}}{k^2 - m_\omega^2 + i m_\omega \Gamma_\omega}
    \left( -ie \frac{m_\omega^2}{g_\omega}\right)
    \cdot \\ \cdot
    ( k^\tau {\epsilon_{\gamma}}^\sigma - k^\sigma {\epsilon_{\gamma}}^\tau )
    \varepsilon_{\tau \sigma ? ?}
    \cdot
    \frac{-i}{r^2 - m_{f_0}^2 + i m_{f_0} \Gamma_{f_0}} g_{f_0 \pi^0 \pi^0}
    .
    [/tex]
    k - the radiative photon four-momentum, ##\epsilon_{\gamma}## - the photon polarization, r - ##f_0## four-momentum.
     
    Last edited: Jun 30, 2013
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: E+e- -> gamma f0 -> gamma pi0 pi0 cross section with VMD
  1. Ee ->e+e+ scattering (Replies: 9)

  2. PIXE cross section (Replies: 3)

Loading...