Problem of the Week #122 - July 28th, 2014

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The problem presented involves evaluating the integral of the square root of the tangent function, specifically ∫√(tan x) dx. The suggested substitution is t² = tan x, which leads to a series of transformations and integrals involving rational functions and arctangent expressions. The solution includes breaking down the integral into manageable parts, utilizing logarithmic and inverse tangent functions to arrive at the final expression. The correct answer was provided by a user named Kiwi, showcasing a detailed step-by-step approach to solving the integral. This discussion emphasizes the importance of substitution techniques in integral calculus.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem!

-----

Problem: Evaluate $\displaystyle\int\sqrt{\tan x}\,dx$.

-----

Hints: [sp]Start with the substitution $t^2=\tan x$.

Also note that $t^4+1 = (t^2+1)^2-(\sqrt{2}t)^2 = (t^2+\sqrt{2}t+1)(t^2-\sqrt{2}t+1)$.[/sp]

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was correctly answered by Kiwi. You can find their solution below.

[sp]let

t^2=\tan (x), then

2tdt=\frac {dx}{\cos^2(x)}=\frac{(\cos^2(x)+\sin^2(x))dx}{\cos^2(x)}=(1+\tan^2(x))dx =(t^4+1)dx=((t^2+1)^2-(\sqrt2t)^2)dx

\therefore 2tdt=(t^2+\sqrt 2 t +1)(t^2-\sqrt 2 t +1)dx

\therefore tdx=\frac {2t^2dt}{(t^2+\sqrt 2 t +1)(t^2-\sqrt 2 t +1)}=\frac {tdt}{\sqrt 2 (t^2-\sqrt 2 t +1)}-\frac {tdt}{\sqrt 2 (t^2+\sqrt 2 t +1)}

So
\int \sqrt{\tan(x)}dx
=\frac{1}{\sqrt 2}\int \frac {(t-\sqrt 2)dt}{(t^2-\sqrt 2 t +1)}-\frac{1}{\sqrt 2}\int \frac {(t+\sqrt 2)dt}{(t^2+\sqrt 2 t +1)}+\frac{1}{\sqrt 2}\int \frac {\sqrt 2 dt}{(t^2-\sqrt 2 t +1)}+\frac{1}{\sqrt 2}\int \frac {(\sqrt 2)dt}{(t^2+\sqrt 2 t +1)}

=\frac 1{\sqrt 2} \ln \left(\frac{t^2-\sqrt 2 t +1}{t^2+\sqrt 2 t +1}\right)+\int \frac {dt}{(t^2-\sqrt 2 t +1)}+\int \frac {dt}{(t^2+\sqrt 2 t +1)}

=\frac 1{\sqrt 2} \ln \left(\frac{t^2-\sqrt 2 t +1}{t^2+\sqrt 2 t +1}\right)+\int \frac {dt}{(t-\frac{1}{\sqrt 2})^2+ (\frac{1}{\sqrt 2})^2)}+\int \frac {dt}{(t+\frac{1}{\sqrt 2})^2+ (\frac{1}{\sqrt 2})^2)}

Now let \frac 1 {\sqrt 2}\tan(s_1)=t-\frac 1{\sqrt 2} and \frac 1 {\sqrt 2}\tan(s_2)=t+\frac 1{\sqrt 2} then

\frac 1{\sqrt 2} \frac{ds_*}{\cos^2(s_*)}=dt therefore:

\int \sqrt{\tan(x)}dx

=\frac 1{\sqrt 2} \ln \left(\frac{t^2-\sqrt 2 t +1}{t^2+\sqrt 2 t +1}\right)+\frac 1{2\sqrt 2}\int \frac {ds_1}{(\tan^2(s_1)+ 1)\cos^2(s_1)}+\frac 1{2\sqrt 2}\int \frac {ds_2}{(\tan^2(s_2)+ 1)\cos^2(s_2)}

=\frac 1{\sqrt 2} \ln \left(\frac{t^2-\sqrt 2 t +1}{t^2+\sqrt 2 t +1}\right)+\frac {s_1+s_2}{2\sqrt 2}+C

=\frac 1{\sqrt 2} \ln \left(\frac{t^2-\sqrt 2 t +1}{t^2+\sqrt 2 t +1}\right)+\frac {\tan^{-1}(\sqrt 2 t-1)+\tan^{-1}(\sqrt 2 t+1)}{2\sqrt 2}+C

=\frac 1{\sqrt 2} \ln \left(\frac{\tan(x)-\sqrt {2 \tan(x)} +1}{\tan(x)+\sqrt {2 \tan(x)} +1}\right)+\frac {\tan^{-1}(\sqrt{2\tan(x)}-1)+\tan^{-1}( \sqrt{2\tan(x)}+1)}{2\sqrt 2}+C[/sp]
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K