Problem of the Week #129 - September 15th, 2014

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the identity for any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^3$: $(\mathbf{a}\times\mathbf{b}) \cdot (\mathbf{c}\times\mathbf{d}) = \begin{vmatrix}\mathbf{a}\cdot\mathbf{c} & \mathbf{b}\cdot\mathbf{c}\\ \mathbf{a}\cdot\mathbf{d} & \mathbf{b}\cdot\mathbf{d}\end{vmatrix}$. Solutions provided by users Longines and Euge utilize the scalar triple product and Einstein's notation, respectively, to demonstrate the equality of the left-hand side (LHS) and right-hand side (RHS). Both approaches confirm that the identity holds true for all specified vectors in three-dimensional space.

PREREQUISITES
  • Understanding of vector operations, specifically cross and dot products.
  • Familiarity with the scalar triple product and its properties.
  • Knowledge of Einstein summation notation and its application in vector calculus.
  • Basic linear algebra concepts, including determinants of matrices.
NEXT STEPS
  • Study the properties of the scalar triple product in vector calculus.
  • Learn about Einstein summation notation and its applications in physics and mathematics.
  • Explore determinants and their geometric interpretations in linear algebra.
  • Investigate additional vector identities and their proofs in three-dimensional space.
USEFUL FOR

Mathematicians, physics students, and educators seeking to deepen their understanding of vector identities and their proofs in three-dimensional space.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem!

-----

Problem: Prove for any $\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\in\mathbb{R}^3$,
\[(\mathbf{a}\times\mathbf{b}) \cdot (\mathbf{c}\times\mathbf{d}) = \begin{vmatrix}\mathbf{a}\cdot\mathbf{c} & \mathbf{b}\cdot\mathbf{c}\\ \mathbf{a}\cdot\mathbf{d} & \mathbf{b}\cdot\mathbf{d}\end{vmatrix}.\]

-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was correctly answered by Euge, Kiwi, and Longines.

Here's Longines' solution, which uses a combination of the vector and scalar triple product: [sp]LHS = $(a \times b) \cdot (c \times d)$

RHS = $ \begin{vmatrix}
a \cdot b & b \cdot c\\
a \cdot d & b \cdot d
\end{vmatrix} $

Where $a,b,c,d \in R^3$
LHS :
Let $(c \times d) = \textbf{e}$

$ \implies (a \times b) \cdot \textbf{e}$Now using the properties of the scalar triple product, we have: $b \cdot (\textbf{e} \times a)$$= b \cdot ((c \times d) \times a)$$= b \cdot (( (a \cdot c)d - c(a \cdot d)) $ [Using the properties of the Vector Triple Product]

$= (a.c)(b.d)- (b.c)(a.d)$

$\implies \begin{vmatrix}
a \cdot b & b \cdot c\\
a \cdot d & b \cdot d
\end{vmatrix} $ = RHSWe have shown LHS = RHS for all $a,b,c,d \in R^3$[/sp]

Here's Euge's solution, which uses Einstein's notation: [sp]Using Einstein's notation, we write

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \epsilon_{ijk} \epsilon^i_{\, \mu\nu}\, a^j b^k c^\mu d^\nu = (\delta_{j\nu} \delta_{k\mu} - \delta_{j\mu} \delta_{k\nu}) a^j b^k c^\mu d^\nu$$,

where the last equation follows from the $\epsilon-\delta$ identity. Since

$$ (\delta_{j\mu} \delta_{k\nu} - \delta_{j\nu} \delta_{k\mu}) a^j b^k c^\mu d^\nu = (\delta_{j\mu} a^j c^\mu) (\delta_{k\nu} b^k d^\nu) - (\delta_{j\nu} a^j d^\nu) (\delta_{k\mu} b^k c^\mu) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$$,

we deduce

$$ (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) = \left|\begin{array}{cc}\mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d}\end{array}\right|.$$[/sp]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
589
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K