- #1

Ackbach

Gold Member

MHB

- 4,155

- 89

-----

Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that \[f(a)\cdot f'(a) \cdot f''(a) \cdot f'''(a)\geq 0 .\]

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!