MHB Problem of the Week #201 - Tuesday, April 5, 2016

  • Thread starter Thread starter Jameson
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The problem involves computing the trace and norm of the element $\sqrt{2} + \sqrt{3}$ in the Galois extension $\Bbb Q(\sqrt{2}, \sqrt{3})/\Bbb Q$. The solution highlights the use of properties of Galois extensions to find these values. Deveno provided a correct solution, detailing the calculations involved in determining both the trace and the norm. The discussion emphasizes the importance of understanding Galois theory in solving such problems. Overall, the thread illustrates the application of algebraic concepts in number theory.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Problem: Compute the trace and norm of $\sqrt{2} + \sqrt{3}$ in the Galois extension $\Bbb Q(\sqrt{2}, \sqrt{3})/\Bbb Q$.
-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was correctly solved by Deveno. You can read his solution below.
I will use two theorems without proof:

1. If $a,b$ are algebraic over $F$, then $F(a,b) = [F(a)](b)$.

2. If $F \leq K \leq E$ are fields, with $\{u_i\}$ a basis for $K$ over $F$ and $\{v_j\}$ a basis for $E$ over $K$, then a basis for $E$ over $F$ is $\{u_iv_j\}$.

Together, these imply $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ is a basis for $\Bbb Q(\sqrt{2},\sqrt{3})$ (this hinges on the fact that $x^2 - 2$ is irreducible over $\Bbb Q$; that is, $\sqrt{2}$ is irrational, and that $x^2 - 3$ is irreducible over $\Bbb Q(\sqrt{2})$, which can be seen by squaring:

If $(a + b\sqrt{2})^2 = 3$, with $a,b \in \Bbb Q$, then: $a^2 + 2b^2 = 3$ and $2ab\sqrt{2} = 0$. The second equation tells us $ab = 0$, which then means either $a^2 = 3$ (but $\sqrt{3} \not\in \Bbb Q$), or $2b^2 = 3$, which is likewise impossible (since: $\dfrac{\sqrt{3}}{\sqrt{2}} \not\in \Bbb Q$).).

Now the function $L: \Bbb Q(\sqrt{2},\sqrt{3}) \to \Bbb Q(\sqrt{2},\sqrt{3})$ given by $\alpha \mapsto (\sqrt{2} + \sqrt{3})\alpha$ is linear, so we can find its matrix relative to the basis above, which is:

$[L] = \begin{bmatrix}0&2&3&0\\1&0&0&3\\1&0&0&2\\0&1&1&0\end{bmatrix}$

The POTW asks us to find the trace and determinant of $L$ (which are invariant under a change of basis). The trace is immediately seen to be $0$, the determinant is a bit harder to compute, but expansion by minors gives us:

$\det(L) = (-1)\begin{vmatrix}2&3&0\\0&0&2\\1&1&0\end{vmatrix} + \begin{vmatrix}2&3&0\\0&0&3\\1&1&0\end{vmatrix}$

$= (-1)(6-4) + (9-6) = -2 + 3 = 1$.

Alternatively, if $G = \text{Gal}(\Bbb Q(\sqrt{2},\sqrt{3})/\Bbb Q)$, then if, for $\alpha \in \Bbb Q(\sqrt{2},\sqrt{3})$ we have:

$\text{Trace}(\alpha) = \sum\limits_{\sigma \in G} \sigma(\alpha)$

and:

$\text{Norm}(\alpha) = \prod\limits_{\sigma \in G} \sigma(\alpha)$

(It should be evident that $\Bbb Q(\sqrt{2},\sqrt{3})$ is a Galois extension, since it is the splitting field of $(x^2 - 2)(x^2 - 3)$),

then since the elements of $G$ are determined by: $\sigma(\sqrt{2}),\sigma(\sqrt{3})$ and we must have (since $\sigma$ fixes $\Bbb Q$)

$\sigma(\sqrt{2})^2 - 2 = 0$
$\sigma(\sqrt{3})^2 - 3 = 0$

the elements of $G$ are seen to be:

$\sigma_1 = \text{id}$
$\sigma_2(\sqrt{2}) = -\sqrt{2}, \sigma_2(\sqrt{3}) = \sqrt{3}$ (this fixes $\Bbb Q(\sqrt{3})$)
$\sigma_3(\sqrt{2}) = \sqrt{2}, \sigma_3(\sqrt{3}) = -\sqrt{3}$ (this fixes $\Bbb Q(\sqrt{2})$)
$\sigma_4(\sqrt{2}) = -\sqrt{2}, \sigma_3(\sqrt{3}) = -\sqrt{3}$ (this fixes $\Bbb Q(\sqrt{6})$).

We have 3 automorphisms of order 2, so this group is isomorphic to $V$, the Klein $4$-group.

The trace is thus computed to be:

$(\sqrt{2} + \sqrt{3}) + (-\sqrt{2} + \sqrt{3}) + (\sqrt{2} - \sqrt{3}) + (-\sqrt{2} - \sqrt{3}) = 0$,

while the norm is seen to be:

$(\sqrt{2} + \sqrt{3})(-\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})(-\sqrt{2} - \sqrt{3})$

$= (-2 + 3)(-2 + 3) = 1$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K