Problem of the Week #27 - October 1st, 2012

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on finding the Fourier series representation for the $2p$-periodic function defined as \(f(x) = a\left(1-\left(\tfrac{x}{p}\right)^2\right)\) for the interval \(-p \leq x \leq p\), where \(a \neq 0\). The problem was successfully solved by user BAdhi, who provided a detailed solution. The Fourier series representation is crucial for analyzing periodic functions in various applications, including signal processing and vibration analysis.

PREREQUISITES
  • Understanding of Fourier series and periodic functions
  • Knowledge of mathematical analysis, specifically series convergence
  • Familiarity with the properties of even and odd functions
  • Basic skills in calculus, particularly integration techniques
NEXT STEPS
  • Study the derivation of Fourier series for piecewise continuous functions
  • Explore the application of Fourier series in signal processing
  • Learn about convergence criteria for Fourier series
  • Investigate the use of Fourier series in solving differential equations
USEFUL FOR

Mathematicians, engineers, and students studying signal processing or mathematical analysis who are interested in the application of Fourier series to periodic functions.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Find the Fourier series representation for the $2p$-periodic function
\[f(x) = a\left(1-\left(\tfrac{x}{p}\right)^2\right),\quad -p\leq x\leq p,\, a\neq 0.\]

-----

 
Physics news on Phys.org
This week's problem was correctly answered by BAdhi. You can find his solution below.

The angular frequency - $\omega$ of this periodic function is $2\pi \frac{1}{2p}=\frac{\pi}{p}$Let the Fourier series of the function $f(x)$ be,$$f(x)=\frac{a_0}{2}+ \sum \limits_{n=1}^{\infty} [a_n \cos(n\omega x)+b_n\sin(n\omega x)]$$the function $f(x)=a\left( 1-\left( \frac{x}{p}\right) ^2 \right)$ is symmetrical over the y-axis, so function is an even function which makes the sin terms disappear ($b_n=0$) from the Fourier series. Then the Fourier series will be,$$f(x)=\frac{a_0}{2}+ \sum \limits_{n=1}^{\infty} a_n \cos(n\omega x)$$before continuing with finding coefficients of the Fourier series, Let's find results of the following integrals.$when\; \omega =\frac{\pi}{p} \implies \omega p=\pi$$$\int \limits_{-p}^{p} \cos(n\omega x)\, dx =\left[ \frac{\sin(n\omega x)}{n\omega}\right]_{-p}^{p}=\frac{1}{n\omega}(\sin(n\pi) +\sin(n\pi))=0 \qquad \qquad ...(1)$$

$$\begin{align}
\int \limits_{-p}^{p} x^2\cos(n\omega x)\, dx&= \left[x^2\underbrace{\frac{\sin(n\omega x)}{n\omega}}_{=0\; from\; (1)}\right]_{-p}^{p}-\int \limits_{-p}^{p} 2x\frac{\sin(n\omega x)}{n\omega}\, dx\\
&=-2\left[ \left[-x \frac{\cos(n\omega x)}{(n\omega )^2}\right]_{-p}^{p}-\int \limits_{-p}^{p} \frac{-\cos(n\omega x)}{(n\omega )^2}\, dx \right]\\
&=2\left[ \frac{p\cos(n\pi )-(-p)\cos(-n\pi )}{(n\omega )^2}+\underbrace{ \left[ \frac{sin(n\omega x)}{(n\omega )^3} \right]_{-p}^{p}}_{=0\; from\; (1)} \right] \\
&=2\left[\frac{p\cos(n\pi)+p\cos(n\pi)}{(n\omega)^2}\right]\\
&=\frac{4p\cos(n\pi)}{(n\omega)^2}\\
&=\frac{4p(-1)^n}{(n\omega)^2} \qquad \qquad ...(2)
\end{align}$$Now let's find the coefficients of the Fourier series of the function $f(x)$,$$\begin{align}
a_0&=\frac{2}{2p} \int \limits_{-p}^{p} f(x)\, dx\\
&=\frac{1}{p} \int \limits_{-p}^{p} a\left(1-\left(\frac{x}{p}\right)^2 \right) \, dx\\
&=\frac{a}{p}\left[ x-\frac{x^3}{3p^2} \right]_{-p}^{p}\\
&=\frac{a}{p}\left[ \left( p-\frac{p^3}{3p^2}\right) - \left(-p-\frac{(-p)^3}{3p^2}\right) \right]\\
&=\frac{a}{p}\left[ p-\frac{p}{3}+p-\frac{p}{3}\right]\\
&=\frac{4a}{3}
\end{align}$$$$\begin{align}
a_n&=\frac{2}{2p} \int \limits_{-p}^{p} f(x)\cos(n\omega x)\,dx\\
&=\frac{1}{p} \int \limits_{-p}^{p} a\left( 1-\left( \frac{x}{p}\right) ^2 \right) \cos(n\omega x)\, dx\\
&=\frac{1}{p} \int \limits_{-p}^{p} a\cos(n\omega x) -\frac{a}{p^2}x^2\cos(n\omega x)\, dx\\
&=\frac{a}{p} \underbrace{\left[ \int \limits_{-p}^{p} \cos(n\omega x)\, dx\right]}_{=0\; from\; (1)} -\frac{a}{p^3} \underbrace{\left[ \int \limits_{-p}^{p} x^2\cos(n\omega x)\, dx\right]}_{=\frac{4p(-1)^n}{(n\omega)^2}\; from \; (2)} \\
&=-\frac{4a(-1)^n}{(np\omega)^2}\\
&=-\frac{4a(-1)^n}{(n\pi)^2}
\end{align}$$Enventually, the Fourier series of the function f(x) can be stated as,$$f(x)=\frac{2a}{3}- \sum \limits_{n=1}^{\infty} \frac{4a(-1)^n}{(n\pi)^2}\cos \left(\frac{n\pi x}{p}\right)$$
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K