Problem Of The Week # 286 - Oct 24, 2017

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The polynomial defined as \( f_n(x) = \sum_{k=0}^n 2^{k(n-k)} x^k \) has all real roots for each positive integer \( n \). The proof utilizes the intermediate value theorem and shows that the values of \( f_n \) at specific points \( -2^{-n}, -2^{-n+2}, \ldots, -2^n \) alternate in sign. This alternation guarantees that there is at least one root in each of the \( n \) intervals, confirming that \( f_n \) has \( n \) distinct real roots. The solution is attributed to Kiran Kedlaya and associates, referencing Problem B-4 from the 2014 Putnam Archive.

PREREQUISITES
  • Understanding of polynomial functions
  • Familiarity with the intermediate value theorem
  • Knowledge of real analysis concepts
  • Basic combinatorial mathematics
NEXT STEPS
  • Study the properties of polynomial roots and their behaviors
  • Learn about the intermediate value theorem in depth
  • Explore combinatorial proofs in mathematics
  • Review the 2014 Putnam competition problems for additional context
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in polynomial root behavior and combinatorial proofs will benefit from this discussion.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Show that for each positive integer $n$, all the roots of the polynomial
\[
\sum_{k=0}^n 2^{k(n-k)} x^k
\]
are real numbers.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's POTW, which was Problem B-4 of the 2014 Putnam Archive. The solution, attributed to Kiran Kedlaya and associates, follows.

[sp]Define the polynomial $\displaystyle f_n(x) = \sum_{k=0}^n 2^{k(n-k)} x^k$. Since
\[
f_1(x) = 1+x, f_2(x) = 1 + 2x + x^2 = (1+x)^2,
\]
the claim holds for for $n=1,2$. For $n \geq 3$, we show that the quantities
\[
f_n(-2^{-n}), f_n(-2^{-n+2}), \dots, f_n(-2^n)
\]
alternate in sign; by the intermediate value theorem, this will imply that $f_n$ has a root in each of the $n$ intervals $(- 2^{-n}, - 2^{-n+2}), \dots, (- 2^{n-2}, -2^n)$, forcing $f_n$ to have as many distinct real roots as its degree.

For $j \in \{0,\dots,n\}$, group the terms of $f_n(x)$ as
\begin{align*}
&\cdots \\
&+ 2^{(j-5)(n-j+5)} x^{j-5} + 2^{(j-4)(n-j+4)} x^{j-4} \\
&+ 2^{(j-3)(n-j+3)} x^{j-3} + 2^{(j-2)(n-j+2)} x^{j-2} \\
&+ 2^{(j-1)(n-j+1)} x^{j-1} + 2^{j(n-j)} x^j + 2^{(j+1)(n-j-1)} x^{j+1} \\
&+ 2^{(j+2)(n-j-2)} x^{j+2} + 2^{(j+3)(n-j-3)} x^{j+3} \\
&+2^{(j+4)(n-j-4)} x^{j+4} + 2^{(j+5)(n-j-5)} x^{j+5} \\
& \cdots.
\end{align*}
Depending on the parity of $j$ and of $n-j$, there may be a single monomial left on each end. When evaluating at $x =- 2^{-n+2j}$, the trinomial evaluates to $0$. In the binomials preceding the trinomial, the right-hand term dominates, so each of these binomials contributes with the sign of $x^{j-2k}$, which is $(-1)^j$. In the binomials following the trinomial, the left-hand term dominates, so again the contribution has sign $(-1)^j$.

Any monomials which are left over on the ends also contribute with sign $(-1)^j$. Since $n \geq 3$, there exists at least one contribution other than the trinomial, so $f_n(- 2^{-n+2j})$ has overall sign $(-1)^j$, proving the claimed alternation.[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K