Can x(x+y) Be Proved to Be ≤ 2 for Positive Real Numbers?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The inequality \( x(x+y) \le 2 \) for positive real numbers \( x \) and \( y \) is proven under the condition \( x^5 + y^3 \le x^2 + y^2 \). The discussion highlights the relationship between the regions defined by these inequalities in the first quadrant of the xy-plane. The boundary lines \( B_1 \) and \( B_2 \) intersect at the point (1,1), where both gradients are equal, confirming that \( R_2 \) contains \( R_1 \). The maximum value of the right-hand side is established at (1,1), leading to the conclusion that the inequality holds for all \( (x,y) \) in the defined region.

PREREQUISITES
  • Understanding of inequalities involving real numbers
  • Familiarity with implicit differentiation
  • Knowledge of graphing functions in the Cartesian plane
  • Basic calculus concepts, including maxima and minima
NEXT STEPS
  • Study implicit differentiation techniques for analyzing curves
  • Learn about the properties of polynomial functions and their graphs
  • Explore optimization problems in multivariable calculus
  • Investigate the use of software tools like Wolfram Alpha for solving complex equations
USEFUL FOR

Mathematicians, calculus students, and anyone interested in inequalities and optimization in real analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Let ##x## and ##y## be the positive real numbers such that ##x^5+y^3 \le x^2+y^2##.

Prove that ##x(x+y)\le 2##.

-----
 
Last edited by a moderator:
Physics news on Phys.org
This is not an answer but an observation of the relevant graphs for what is going on. I observe a funny shape.
1662277187219.png
 
Last edited:
  • Like
Likes   Reactions: Steve4Physics
anuttarasammyak said:
This is not an answer but an observation of the relevant graphs for what is going on. I observe a funny shape.
View attachment 313738
Yes, I was playing around with this and also saw the same. To expand a bit...

##x^5 +y^3 \le x^2 + y^2## with ##x, y>0## defines a region in the 1st quadrant of the xy plane as shown below:

desmos-graph(8).png


Call this region, shaded red, ##R_1##. Call the red boundary-line (corresponding to the equality condition) ##B_1##.

Similarly ##x(x+y) \le 2## defines region ##R_2## with boundary-line ##B_2## (blue).

desmos-graph(9).png


Overlaying these gives:

desmos-graph(10).png


(If anyone wants to set-up/play with these graphs, see
https://www.desmos.com/calculator/og3edz9st5)

The problem stated is equivalent to showing that ##R_2## completely contains ##R_1##; i.e. that every point (x, y) in ##R_1## is also in ##R_2##.

(The converse is not necessarily true: there are points in ##R_2## that are not in ##R_1##.)

It is easy to determine that##B_1## passes through (0,1), (1,0) and (1,1) and that ##B_2## passes through (1,1) and (√2,1).

Note that (1,1) is a common point and we can show ##B_1## and ##B_2## just touch here – i.e. they have a common tangent – as follows:

For ##B_1:x^5 +y^3 - x^2 - y^2=0##
Differentiating implicitly gives:
##\frac {dy}{dx} = \frac {x(2- 5x^3)}{y(3y– 2}##
At (1,1) ##\frac {dy}{dx} = \frac {1(2-5*1)^3}{1(3*1-2)} = -3##

For ##B_2: x(x+y) =2##
Differentiating implicitly gives:
##\frac {dy}{dx} = -\frac {2x+y}{x}##
At (1,1), ##\frac {dy}{dx}= -\frac{2*1+1}{1} = -3## the same as for ##B_1##.

We also note that at (1,1) ##B_1## is concave upwards and ##B_2## is concave downwards. From visual inspection ##R_2## entirely contains ##R_1##, as required. But that's no proof.
 

Attachments

  • desmos-graph(10).png
    desmos-graph(10).png
    8.8 KB · Views: 110
  • Like
Likes   Reactions: anuttarasammyak
( cont. of my post #2 )
Let us name
Graph 1 : ##x^5-x^2+y^3-y^2=0##
Graph 2 : ##x(x+y)=2##
The x coordinate of the crossing point satisfies
(x-1)(x^7+x^6-x^4+6x^3+6x^2-8x-8)=0
So we now (x,y)=(1,1) is a crossing point, let us say it P.
At P by simple calculation
the gradient of graph 1 = the gradient of graph 2 = -3
The second derivative of graph 1 = 4
The second derivative of graph 2 = -54
So we show the graph 2 surpass graph 1 around point P.
This is just a local discussion around P.

The graph of the remaining part of the above crossing point equation

1662282137495.png

So as for x < 1.083... where the red dot point in the graph, we shall not have another crossing which goes with the statement.
The red point should not correspond to another crossing but the x bounded point, but I would like to get a confirmation about my interpretation.
Anyway, the above three lines I said watching the graph are not proof but a speculation.

For graph 1
\frac{dy}{dx}=-\frac{x(5x^3-2)}{y(3y-2)}
dy/dx=0 at x=0, ##(\frac{2}{5})^{1/3}##, i.e. (0,1), ##((\frac{2}{5})^{1/3},\beta)##
where ##\beta^3+\beta^2+(2/5)^{5/3}+(2/5)^{2/3},\beta>0##
dx/dy=0 at y=0, 2/3, i.e. ##(1,0),(\alpha,2/3)## where
##\alpha^5-\alpha^2-4/27=0,\alpha>0##

For graph 2
\frac{dy}{dx}=\frac{\frac{x}{\sqrt{x^2+4}}-1}{2} &lt;0
So y is monotonously decreasing function of x
for x=0, y=##+\infty## >1
for x=##(\frac{2}{5})^{1/3}, y=\frac{\sqrt{(2/5)^{2/3}+4}-(2/5)^{1/3}}{2}## > ##\beta## by numerical calculation
for y=0, x=##\sqrt{2}## > 1
for y=2/3, x=##\frac{2\sqrt{19}-1}{3} > \alpha## by numerical calculation

That means graph 2 surpass graph 1 in region x,y>0.

Thus I wish the statement was proved, though I would like to know a more elegant solution very much.
 
Last edited:
  • Like
Likes   Reactions: Steve4Physics
anuttarasammyak said:
( cont. of my post #2 )
Let us name
Graph 1 : ##x^5-x^2+y^3-y^2=0##
Graph 2 : ##x(x+y)=2##
The x coordinate of the crossing point satisfies
(x-1)(x^7+x^6-x^4+6x^3+6x^2-8x-8)=0
So we now (x,y)=(1,1) is the crossing point, let us say it P.
At P by simple calculation
the gradient of graph 1 = the gradient of graph 2 = -3
The second derivative of graph 1 = 4
The second derivative of graph 2 = -54
So we show the graph 2 surpass graph 1 around point P.
This is just local discussion around P.
Working out the second derivatives (by hand) was too daunting for me!

It's worth noting that the maximum value of x and the maximum vaue of y in the region of interest (1st quadrant) can easily be found by considering ##\frac {dy}{dx} = 0## and ##\frac {dy}{dx} = ∞##. This can support the visual argument.

However, I presume a rigorous analytical proof is required so I'm stuck.
 
anuttarasammyak said:
I wish the statement was proved, though I would like to know a more elegant solution very much.
Me too!
 
(Post script to my post #4)
We can make similar problems, e.g.,
------------
For positive real numbers x and y
x^5-x^2+y^3-y \leq 0
satisfy
y&lt;x^{-3/2}
and
\sqrt{x}+xy&lt;2
--------------

1662298193104.png
 
anuttarasammyak said:
Thus I wish the statement was proved, though I would like to know a more elegant solution very much.
I found what I think is at least a simple solution;

Given $$x^5+y^3 \le x^2+y^2$$ is valid in some domain ##R_1## we have $$ 0 \le x^2+y^2 - x^5 - y^3$$ we can add the same thing to both sides without changing the inequality, in this case the quantity ##x^2 + xy##;

$$ x^2 + xy \le 2x^2+y^2 - x^5 - y^3 + xy$$ where the RHS has a maximum of 2 for all ##x,y>0## at ##(1,1)## thus

$$x(x + y) \le 2$$ for all ##(x,y)## in ##R_1##
 
bob012345 said:
$$ x^2 + xy \le 2x^2+y^2 - x^5 - y^3 + xy$$ where the RHS has a maximum of 2 for all ##x,y>0## at ##(1,1)## thus
Nice. But may I ask how you determined that the RHS has a maximum at (1,1) and that this is the only maximum (for x,y>0)?

(I'm probably being a bit slow but I just can't see how to establish that without some calculus.)
 
  • Like
Likes   Reactions: bob012345
  • #10
Steve4Physics said:
Nice. But may I ask how you determined that the RHS has a maximum at (1,1) and that this is the only maximum (for x,y>0)?

(I'm probably being a bit slow but I just can't see how to establish that without some calculus.)
Thanks. I left that part out for brevity but here is the calculus;

Take the partial derivatives of the function on the RHS $$\frac{\partial f(x,y)}{\partial x} = 4x + y -5x^4 = 0$$ and $$\frac{\partial f(x,y)}{\partial y} = x +2y -3y^2 = 0$$ these yield;

$$y = 5x^4 -4x$$ and $$x = 3y^2 -2y$$ substituting we get;

$$x = 75x^8 -120x^5 -10x^4 + 48x^2 +8x$$ or $$75x^7 -120x^4 -10x^3 + 48x +7 = 0$$

We can test if ##x=1## works and it does. Wolfram Alpha gives another real solution of ##x≈0.90173## but that yields a negative ##y## value and is also a relative minimum so is rejected since we are only concerned with positive ##(x,y)## so ##x=1## yields ##y=1## and we test those
$$f(1,1) = 2x^2 + xy +y^2 - x^5 - y^3 = 2 + 1 + 1 - 1 -1 = 2$$

Here is a plot of the function and the ##z=2## plane and point ##(1,1,2)## for reference.

https://www.math3d.org/oEvyPVWTx
 
Last edited:
  • #11
bob012345 said:
Thanks. I left that part out for brevity but here is the calculus;
Thanks for taking the time to do that. I thought there might be some non-calculus approach I was missing.

bob012345 said:
$$75x^7 -120x^4 -10x^3 + 48x +7 = 0$$We can test if ##x=1## works and it does. Wolfram Alpha gives another real solution of ##x≈0.90173## but that yields a negative ##y## value and is also a relative minimum so is rejected since we are only concerned with positive ##(x,y)## so ##x=1## yields ##y=1##
The problem (for me) is that this means we are having to use software such as Wolfram Alpha. Otherwise we can't easily demomstrate that (1,1) is the only maximum. For example, there could be a local maximum of (say) 3 at some point in the domain ##R_1##. Ideally, it would be nice to have a software-free approach to eliminate such possibilities.

Edit: minor change/typo's.
 
Last edited:
  • #12
Steve4Physics said:
Thanks for taking the time to do that. I thought there might be some non-calculus approach I was missing.The problem (for me) is that this means we are having to use software such as Wolfram Alpha. Otherwise we can't easily demonstrate that (1,1) is the only maximum. For example, there could be a local maximum of (say) 3 at some point in the domain ##R_1##. Ideally, it would be nice to have a software-free approach to eliminate such possibilities.

Edit: minor change/typo's.
Thinking about this a little more I think we can demonstrate there is only one relevant maximum by thinking about the form of the derivatives which are used to find the maxima of the function on the RHS above;

$$x = 3y^2 -2y$$ and
$$y = 5x^4 -4x$$

From these we can deduce the following;

The first is a parabola opening to the right or positive x-axis symmetrical around the line ##y=\frac{1}{3}##, the vertex is at ##(-\frac{1}{3}, \frac{1}{3})## which intersects the y-axis at ##(0,0)## and ##(0,\frac{2}{3})## and it is monotonically increasing in the first quadrant for ##x>0## and ##y>\frac{2}{3}##,

The second is a quartic which opens towards positive ##y##, has a vertex in the fourth quadrant and has two roots one at ##(0,0)## and the other at ##(\sqrt[3]{\frac{4}{5}}, 0)## and is monotonically increasing for ##x>\sqrt[3]{\frac{4}{5}}## and ##y>0##.

There can be only one intersection of these two monotonically increasing functions in the positive quadrant which must then be at the point previously identified at ##(1,1)##. Thus this is the only maximum of the function in the positive quadrant and is equal to 2.

Though we did not require it, visually, it looks like this;
desmos-graph (28).png
You made me use my brain a little more @Steve4Physics , thanks!
 
Last edited:
  • Like
Likes   Reactions: Steve4Physics

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K