MHB Problem of the Week #65 - June 24th, 2013

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion revolves around Problem of the Week #65, which focuses on d'Alembert's solution to the boundary value problem of a vibrating string. The problem requires demonstrating that if functions f and g are symmetric about x=L/2, then the solution u satisfies the condition u(x, t + L/c) = -u(x, t) for all 0 < x < L and t > 0. Despite the complexity of the problem, no participants provided answers, prompting the original poster to share their solution. The thread highlights the challenge of applying mathematical concepts to specific boundary conditions in partial differential equations. Engagement in the problem-solving process remains crucial for understanding these advanced topics.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Background Info: From PDEs, d'Alembert's solution to the boundary value problem of the vibrating string
\[\left\{\begin{array}{l} \frac{\partial^2 u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2},\qquad 0<x<L,\,\, t>0\\ u(0,t)=0\text{ and }u(L,t)=0\text{ for all $t>0$}\\ u(x,0)=f(x)\text{ and }u_t(x,0)=g(x)\text{ for $0<x<L$}\end{array}\right.\]
is given by
\[u(x,t)=\frac{1}{2}\left[f^{\ast}(x-ct)+f^{\ast}(x+ct)\right]+\frac{1}{2c}\int_{x-ct}^{x+ct} g^{\ast}(s)\,ds,\]
where $f^{\ast}$ and $g^{\ast}$ are the odd extensions of $f$ and $g$ respectively.

Problem: Suppose that both $f$ and $g$ are symmetric about $x=\frac{L}{2}$; that is, $f(L-x)=f(x)$ and $g(L-x)=g(x)$. Show that
\[u\left(x,t+\frac{L}{c}\right)=-u(x,t)\]
for all $0<x<L$ and $t>0$.

-----

 
Physics news on Phys.org
No one answered this week's question. You can find my solution below.
Proof: We note here that $f^{\ast}$ and $g^{\ast}$ are both odd $2L$-periodic functions and also satisfy the symmetry relations $f^{\ast}(L-x)=f^{\ast}(x)$ and $g^{\ast}(L-x)=g^{\ast}(x)$ (which they inherit from $f$ and $g$). With this, we see that
\[\begin{aligned} u\left(x,t+\frac{L}{c}\right) &= \frac{1}{2}\left[f^{\ast} \left(x-c\left(t+\frac{L}{c}\right)\right) + f^{\ast}\left(x+c\left(t+\frac{L}{c}\right)\right)\right] + \frac{1}{2c}\int_{x-c\left(t+\frac{L}{c}\right)}^{ x+c\left(t+\frac{L}{c}\right)} g^{\ast}(s)\,ds\\ &= \frac{1}{2}\left[ f^{\ast}(-(L-(x-ct))) + f^{\ast}(L-(-x-ct))\right] + \frac{1}{2c}\int_{x-ct-L}^{x+ct+L} g^{\ast}(s)\,ds\\ &= \frac{1}{2} \left[ -f^{\ast}(L-(x-ct)) + f^{\ast}(L - (-x - ct)) \right] + \frac{1}{2c} \int_{x-ct-L}^{x+ct+L} g^{\ast}(s)\,ds\\ &= \frac{1}{2} \left[ -f^{\ast}(x-ct) + f^{\ast}(-x-ct)\right] + \frac{1}{2c}\int_{x-ct-L}^{x+ct+L} g^{\ast}(s)\,ds\\
&= \frac{1}{2}\left[ -f^{\ast}(x-ct)- f^{\ast}(x+ct)\right] + \frac{1}{2c}\int_{x-ct}^{x+ct+2L} g^{\ast}(s+L)\,ds\\ &= -\frac{1}{2}\left[ f^{\ast}(x-ct) + f^{\ast}(x+ct)\right] +\frac{1}{2c} \int_{x-ct}^{x+ct} -g^{\ast}(-s-L)\,ds\\ &= -\frac{1}{2} \left[f^{\ast}(x+ct)+ f^{\ast}(x-ct)\right] - \frac{1}{2c}\int_{x-ct}^{x+ct} g^{\ast}(-s-L+2L)\,ds\\ &= -\frac{1}{2}\left[f^{\ast}(x+ct)+f^{\ast} (x-ct) \right] - \frac{1}{2c}\int_{x-ct}^{x+ct} g^{\ast}(L-s)\,ds\\ &= -\left(\frac{1}{2}\left[ f^{\ast}(x+ct)+ f^{\ast}(x-ct)\right] + \frac{1}{2c}\int_{x-ct}^{x+ct} g^{\ast}(s)\,ds\right) \\ &= -u(x,t),\end{aligned}\]
Thus, $u\left(x,t+\dfrac{L}{c}\right)= -u(x,t)$.$\hspace{.25in}\blacksquare$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
401
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K