MHB Problem on finding least number

  • Thread starter Thread starter burgess
  • Start date Start date
burgess
Messages
23
Reaction score
0
Help need to solve math homework problem

Six bells start ringing together and ring at intervals of 2, 4, 6, 8, 10 and 12 seconds respectively. In 30 minutes, how many times do they ring together?

Thanks
 
Mathematics news on Phys.org
So how many intervals of 2 seconds are there in 30 mins?

How many intervals of 4 seconds?

How many intervals of 6? etc...
 
burgess said:
Help need to solve math homework problem

Six bells start ringing together and ring at intervals of 2, 4, 6, 8, 10 and 12 seconds respectively. In 30 minutes, how many times do they ring together?

Thanks
You need to find the least common multiple of 2, 4, 6, 8, 10 and 12. That will give you the interval (measured in seconds) between times when they all ring together. You then have to find how many of those intervals there are in 30 minutes.
 
Opalg said:
You need to find the least common multiple of 2, 4, 6, 8, 10 and 12. That will give you the interval (measured in seconds) between times when they all ring together. You then have to find how many of those intervals there are in 30 minutes.

Thanks for your answer
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top