POTW Product of Two Finite Cyclic Groups

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
For each positive integer ##m##, let ##C_m## denote a cyclic group of order ##m##. Show that for all positive integers ##m## and ##n##, there is an isomorphism ##C_m \times C_n \simeq C_d \times C_l## where ##d = \operatorname{gcd}(m,n)## and ##l = \operatorname{lcm}[m,n]##.
 
Physics news on Phys.org
A trivial result, proven at the end, is that if ##C_m## denotes a cyclic group then ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n## where ##\mathbb{Z}_m## is the cyclic group the group under addition + modulo ##m##. So we need only prove the result for ##\mathbb{Z}_m##. The product on ##\mathbb{Z}_m \times \mathbb{Z}_n## is defined by:

\begin{align*}
(a \text{ mod } m , b \text{ mod } n) (a' \text{ mod } m , b' \text{ mod } n) = ((a+a') \text{ mod } m , (b+b') \text{ mod } n) .
\end{align*}

where ##a \text{ mod } m## means the remainder of ##a## divided by ##m##. Define a map ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow \mathbb{Z}_d \times \mathbb{Z}_l## by

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) .
\end{align*}

where ##A,B,C,## and ##D## are yet to be determined integers.

##\varphi## is a morphism:

The map ##\varphi## is a morphism as

\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi (a' \text{ mod } m , b' \text{ mod } n)
\nonumber \\
& = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) ((A a' + B b') \text{ mod } d , (C a' + D b') \text{ mod } l)
\nonumber \\
& = ((A (a+a') + B (b+b')) \text{ mod } d , (C (a+a') + D (b+b')) \text{ mod } l)
\nonumber \\
& = \varphi ((a+a') \text{ mod } m , (b+b') \text{ mod } n)
\end{align*}

Ensuring ##\varphi## is well defined:

We require it to be well defined, that is replacing ##a## with ##a+km## and replacing ##b## with ##b+k'n## should result in ##A a + B b \rightarrow A a + B b + K d## and ##C a + D b \rightarrow C a + D b + K' l##. This places no constraints on the constants ##A## and ##B##. As ##l = \dfrac{mn}{d}## we must choose ##C = q \dfrac{n}{d}## and ##D = q' \dfrac{m}{d}## where ##q## and ##q'## are integers. With this choice the morphism is:

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (Aa+Bb) \text{ mod } d , (qa \frac{n}{d} + q'b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}

##\varphi## is a group homomorphism:

We confirm it is a group homomorphism:

Identity: The identity of ##\mathbb{Z}_m \times \mathbb{Z}_n## is ##(jm \text{ mod } m , j'n \text{ mod } n)## for ##j## and ##j'## integers. Then

\begin{align*}
\varphi (jm \text{ mod } m , j'n \text{ mod } n) & = \left( (Ajm+Bj'n) \text{ mod } d , (qjm \frac{n}{d} + q'j'n \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}

Inverse: By definition ##a+a^{-1} = j m## and ##b+b^{-1} = j' n##

\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi(a^{-1} \text{ mod } m , b^{-1} \text{ mod } n)
\nonumber \\
& = \varphi \left( (a \text{ mod } m , b \text{ mod } n) (a^{-1} \text{ mod } m , b^{-1} \text{ mod } n) \right)
\nonumber \\
& = \varphi ((a+a^{-1}) \text{ mod } m , (b+b^{-1}) \text{ mod } n)
\nonumber \\
& = \left( (A(a+a^{-1})+B(b+b^{-1})) \text{ mod } d , (q(a+a^{-1}) \frac{n}{d} + q'(b+b') \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}

Ensuring ##\varphi## is a group isomorphism:

If we can show the kernel of ##\varphi## is trivial (i.e. only contains the identity element), then ##\varphi## would be injective, and given both groups have the same number of elements (as ##mn=dl##) we would have that ##\varphi## a group isomorphism, in other words, the two groups are isomorphic. By choosing ##q,q',A##, and ##B## appropriately can we ensure that the kernel of ##\varphi## is trivial? In order for ##(a \text{ mod } m , b \text{ mod } n) \in ker \varphi##, ##a## and ##b## must satisfy:

\begin{align*}
Aa+Bb = k d \quad \text{and} \quad q a n + q' b m = k' mn
\end{align*}

From which we have

\begin{align*}
(Aq'm-Bqn) a = (kq'd -Bk' n) m \qquad (*) .
\nonumber \\
(Aq'm-Bqn) b = (Ak'm - kqd) n \qquad (**) .
\end{align*}

Choose ##q=-1, q'=1##. By Bezout's identity there exist integers ##r## and ##s## such that ##rm+sn = d##. Choose ##A=r## and ##B=s##. Then from ##(*)## we have ##a = K m## and from ##(**)## we have ##b = K' n##, where ##K## and ##K'## are integers. Therefore, with this choice, the kernel of ##\varphi## is trivial.

Thus,

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (ra+sb) \text{ mod } d , (-a \frac{n}{d} + b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}

is a group homomorphism with trivial kernel and so we have a group isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_d \times \mathbb{Z}_l##.Finally:

The ##mth## cyclic group ##C_m## with elements

\begin{align*}
C_m = \langle g \rangle = \{ g^0 , g^1 , g^2 , \dots g^{m-1} \}
\end{align*}

and the powers ##g^k## are distinct for ##0 \leq k < m## with ##g^m=e##. With multiplication defined by

\begin{align*}
g^i * g^j = \left\{
\begin{matrix}
g^{i+j} & \text{if } 0 \leq i+j < m, \\
g^{i+j-m} & \text{if } m \leq i+j < 2m - 2
\end{matrix}
\right.
\end{align*}

Define

\begin{align*}
C_n = \langle h \rangle = \{ h^0 , h^1 , h^2 , \dots h^{n-1} \}
\end{align*}

and the powers ##k^k## are distinct for ##0 \leq k < n##. Define

Define ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow C_m \times C_n## by ##\varphi (i,j) = (g^i , h^j)##.

Injective: Let ##i,i' \in \mathbb{Z}_m## and ##j,j' \in \mathbb{Z}_m## and assume that ##\varphi (i,j) = \varphi (i',j')##. Then ##(g^i , h^j) = (g^{i'} , h^{j'})## and, since powers ##g^i## with ##i \in \mathbb{Z}_m## distinct, it follows that ##i = i'##. Similarly, ##j = j'##. Hence, ##\varphi## is injective.

Surjective: Let ##x \in C_m \times C_n##, we have ##x = (g^i , h^j)## for some ##(i,j) \in \mathbb{Z}_m \times \mathbb{Z}_n##. Then ##\varphi (i,j) = (g^i , h^j) = x##. Hence, ##\varphi## is surjective.

Homomorphism: Let ##(i,j) , (i',j') \in \mathbb{Z}_m \times \mathbb{Z}_n##. Note ##i+j = pm + r## where ##0 \leq r \leq m-1## and Note ##i'+j' = qn + r'## where ##0 \leq r' \leq n-1##

\begin{align*}
\varphi ((i+i') \text{ mod m} , (j+j') \text{ mod n}) & = (g^r , h^{r'})
\nonumber \\
& = (g^{i+j - pm} , h^{i'+j'-qn})
\nonumber \\
& = (g^i , h^j) (g^{i'} , h^{j'})
\nonumber \\
& = \varphi (i , j) \varphi (i' , j') ,
\end{align*}

so ##\varphi## satisfies the homomorphism property.

Therefore, ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow C_m \times C_n## is an isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq C_m \times C_n## and hence ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n##.
 
Last edited:
Back
Top