For any positive integers m and n, the product of two finite cyclic groups C_m and C_n can be expressed as an isomorphism to another product of cyclic groups C_d and C_l, where d is the greatest common divisor (gcd) of m and n, and l is the least common multiple (lcm) of m and n. This relationship highlights the structural similarities between the groups based on their orders. The isomorphism demonstrates that the combined structure of the two cyclic groups can be simplified into a form that reveals their underlying properties. Understanding this isomorphism is crucial for studying the behavior of finite cyclic groups in group theory. The discussion emphasizes the importance of gcd and lcm in determining the isomorphic relationships between cyclic groups.
#1
Euge
Gold Member
MHB
POTW Director
2,072
245
For each positive integer ##m##, let ##C_m## denote a cyclic group of order ##m##. Show that for all positive integers ##m## and ##n##, there is an isomorphism ##C_m \times C_n \simeq C_d \times C_l## where ##d = \operatorname{gcd}(m,n)## and ##l = \operatorname{lcm}[m,n]##.
A trivial result, proven at the end, is that if ##C_m## denotes a cyclic group then ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n## where ##\mathbb{Z}_m## is the cyclic group the group under addition + modulo ##m##. So we need only prove the result for ##\mathbb{Z}_m##. The product on ##\mathbb{Z}_m \times \mathbb{Z}_n## is defined by:
\begin{align*}
(a \text{ mod } m , b \text{ mod } n) (a' \text{ mod } m , b' \text{ mod } n) = ((a+a') \text{ mod } m , (b+b') \text{ mod } n) .
\end{align*}
where ##a \text{ mod } m## means the remainder of ##a## divided by ##m##. Define a map ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow \mathbb{Z}_d \times \mathbb{Z}_l## by
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) .
\end{align*}
where ##A,B,C,## and ##D## are yet to be determined integers.
##\varphi## is a morphism:
The map ##\varphi## is a morphism as
\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi (a' \text{ mod } m , b' \text{ mod } n)
\nonumber \\
& = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) ((A a' + B b') \text{ mod } d , (C a' + D b') \text{ mod } l)
\nonumber \\
& = ((A (a+a') + B (b+b')) \text{ mod } d , (C (a+a') + D (b+b')) \text{ mod } l)
\nonumber \\
& = \varphi ((a+a') \text{ mod } m , (b+b') \text{ mod } n)
\end{align*}
Ensuring ##\varphi## is well defined:
We require it to be well defined, that is replacing ##a## with ##a+km## and replacing ##b## with ##b+k'n## should result in ##A a + B b \rightarrow A a + B b + K d## and ##C a + D b \rightarrow C a + D b + K' l##. This places no constraints on the constants ##A## and ##B##. As ##l = \dfrac{mn}{d}## we must choose ##C = q \dfrac{n}{d}## and ##D = q' \dfrac{m}{d}## where ##q## and ##q'## are integers. With this choice the morphism is:
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (Aa+Bb) \text{ mod } d , (qa \frac{n}{d} + q'b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}
##\varphi## is a group homomorphism:
We confirm it is a group homomorphism:
Identity: The identity of ##\mathbb{Z}_m \times \mathbb{Z}_n## is ##(jm \text{ mod } m , j'n \text{ mod } n)## for ##j## and ##j'## integers. Then
\begin{align*}
\varphi (jm \text{ mod } m , j'n \text{ mod } n) & = \left( (Ajm+Bj'n) \text{ mod } d , (qjm \frac{n}{d} + q'j'n \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}
Inverse: By definition ##a+a^{-1} = j m## and ##b+b^{-1} = j' n##
\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi(a^{-1} \text{ mod } m , b^{-1} \text{ mod } n)
\nonumber \\
& = \varphi \left( (a \text{ mod } m , b \text{ mod } n) (a^{-1} \text{ mod } m , b^{-1} \text{ mod } n) \right)
\nonumber \\
& = \varphi ((a+a^{-1}) \text{ mod } m , (b+b^{-1}) \text{ mod } n)
\nonumber \\
& = \left( (A(a+a^{-1})+B(b+b^{-1})) \text{ mod } d , (q(a+a^{-1}) \frac{n}{d} + q'(b+b') \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}
Ensuring ##\varphi## is a group isomorphism:
If we can show the kernel of ##\varphi## is trivial (i.e. only contains the identity element), then ##\varphi## would be injective, and given both groups have the same number of elements (as ##mn=dl##) we would have that ##\varphi## a group isomorphism, in other words, the two groups are isomorphic. By choosing ##q,q',A##, and ##B## appropriately can we ensure that the kernel of ##\varphi## is trivial? In order for ##(a \text{ mod } m , b \text{ mod } n) \in ker \varphi##, ##a## and ##b## must satisfy:
\begin{align*}
Aa+Bb = k d \quad \text{and} \quad q a n + q' b m = k' mn
\end{align*}
From which we have
\begin{align*}
(Aq'm-Bqn) a = (kq'd -Bk' n) m \qquad (*) .
\nonumber \\
(Aq'm-Bqn) b = (Ak'm - kqd) n \qquad (**) .
\end{align*}
Choose ##q=-1, q'=1##. By Bezout's identity there exist integers ##r## and ##s## such that ##rm+sn = d##. Choose ##A=r## and ##B=s##. Then from ##(*)## we have ##a = K m## and from ##(**)## we have ##b = K' n##, where ##K## and ##K'## are integers. Therefore, with this choice, the kernel of ##\varphi## is trivial.
Thus,
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (ra+sb) \text{ mod } d , (-a \frac{n}{d} + b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}
is a group homomorphism with trivial kernel and so we have a group isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_d \times \mathbb{Z}_l##.Finally:
Injective: Let ##i,i' \in \mathbb{Z}_m## and ##j,j' \in \mathbb{Z}_m## and assume that ##\varphi (i,j) = \varphi (i',j')##. Then ##(g^i , h^j) = (g^{i'} , h^{j'})## and, since powers ##g^i## with ##i \in \mathbb{Z}_m## distinct, it follows that ##i = i'##. Similarly, ##j = j'##. Hence, ##\varphi## is injective.
Surjective: Let ##x \in C_m \times C_n##, we have ##x = (g^i , h^j)## for some ##(i,j) \in \mathbb{Z}_m \times \mathbb{Z}_n##. Then ##\varphi (i,j) = (g^i , h^j) = x##. Hence, ##\varphi## is surjective.
Homomorphism: Let ##(i,j) , (i',j') \in \mathbb{Z}_m \times \mathbb{Z}_n##. Note ##i+j = pm + r## where ##0 \leq r \leq m-1## and Note ##i'+j' = qn + r'## where ##0 \leq r' \leq n-1##