The discussion establishes that for any positive integers m and n, the direct product of cyclic groups C_m and C_n is isomorphic to the product of cyclic groups C_d and C_l, where d is the greatest common divisor (gcd) of m and n, and l is the least common multiple (lcm) of m and n. This result is a fundamental property in group theory, demonstrating the relationship between cyclic groups and their orders. The isomorphism can be formally expressed as C_m × C_n ≅ C_gcd(m,n) × C_lcm(m,n).
PREREQUISITES
Understanding of cyclic groups and their properties
Knowledge of group theory terminology, specifically isomorphism
Familiarity with concepts of greatest common divisor (gcd) and least common multiple (lcm)
Basic mathematical notation and proof techniques
NEXT STEPS
Study the structure of cyclic groups in detail
Explore the properties of isomorphic groups in group theory
Learn about the applications of gcd and lcm in algebra
Investigate advanced topics in abstract algebra, such as direct products of groups
USEFUL FOR
Mathematicians, students of abstract algebra, and anyone interested in the properties of cyclic groups and their applications in group theory.
#1
Euge
Gold Member
MHB
POTW Director
2,072
245
For each positive integer ##m##, let ##C_m## denote a cyclic group of order ##m##. Show that for all positive integers ##m## and ##n##, there is an isomorphism ##C_m \times C_n \simeq C_d \times C_l## where ##d = \operatorname{gcd}(m,n)## and ##l = \operatorname{lcm}[m,n]##.
A trivial result, proven at the end, is that if ##C_m## denotes a cyclic group then ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n## where ##\mathbb{Z}_m## is the cyclic group the group under addition + modulo ##m##. So we need only prove the result for ##\mathbb{Z}_m##. The product on ##\mathbb{Z}_m \times \mathbb{Z}_n## is defined by:
\begin{align*}
(a \text{ mod } m , b \text{ mod } n) (a' \text{ mod } m , b' \text{ mod } n) = ((a+a') \text{ mod } m , (b+b') \text{ mod } n) .
\end{align*}
where ##a \text{ mod } m## means the remainder of ##a## divided by ##m##. Define a map ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow \mathbb{Z}_d \times \mathbb{Z}_l## by
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) .
\end{align*}
where ##A,B,C,## and ##D## are yet to be determined integers.
##\varphi## is a morphism:
The map ##\varphi## is a morphism as
\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi (a' \text{ mod } m , b' \text{ mod } n)
\nonumber \\
& = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) ((A a' + B b') \text{ mod } d , (C a' + D b') \text{ mod } l)
\nonumber \\
& = ((A (a+a') + B (b+b')) \text{ mod } d , (C (a+a') + D (b+b')) \text{ mod } l)
\nonumber \\
& = \varphi ((a+a') \text{ mod } m , (b+b') \text{ mod } n)
\end{align*}
Ensuring ##\varphi## is well defined:
We require it to be well defined, that is replacing ##a## with ##a+km## and replacing ##b## with ##b+k'n## should result in ##A a + B b \rightarrow A a + B b + K d## and ##C a + D b \rightarrow C a + D b + K' l##. This places no constraints on the constants ##A## and ##B##. As ##l = \dfrac{mn}{d}## we must choose ##C = q \dfrac{n}{d}## and ##D = q' \dfrac{m}{d}## where ##q## and ##q'## are integers. With this choice the morphism is:
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (Aa+Bb) \text{ mod } d , (qa \frac{n}{d} + q'b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}
##\varphi## is a group homomorphism:
We confirm it is a group homomorphism:
Identity: The identity of ##\mathbb{Z}_m \times \mathbb{Z}_n## is ##(jm \text{ mod } m , j'n \text{ mod } n)## for ##j## and ##j'## integers. Then
\begin{align*}
\varphi (jm \text{ mod } m , j'n \text{ mod } n) & = \left( (Ajm+Bj'n) \text{ mod } d , (qjm \frac{n}{d} + q'j'n \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}
Inverse: By definition ##a+a^{-1} = j m## and ##b+b^{-1} = j' n##
\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi(a^{-1} \text{ mod } m , b^{-1} \text{ mod } n)
\nonumber \\
& = \varphi \left( (a \text{ mod } m , b \text{ mod } n) (a^{-1} \text{ mod } m , b^{-1} \text{ mod } n) \right)
\nonumber \\
& = \varphi ((a+a^{-1}) \text{ mod } m , (b+b^{-1}) \text{ mod } n)
\nonumber \\
& = \left( (A(a+a^{-1})+B(b+b^{-1})) \text{ mod } d , (q(a+a^{-1}) \frac{n}{d} + q'(b+b') \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}
Ensuring ##\varphi## is a group isomorphism:
If we can show the kernel of ##\varphi## is trivial (i.e. only contains the identity element), then ##\varphi## would be injective, and given both groups have the same number of elements (as ##mn=dl##) we would have that ##\varphi## a group isomorphism, in other words, the two groups are isomorphic. By choosing ##q,q',A##, and ##B## appropriately can we ensure that the kernel of ##\varphi## is trivial? In order for ##(a \text{ mod } m , b \text{ mod } n) \in ker \varphi##, ##a## and ##b## must satisfy:
\begin{align*}
Aa+Bb = k d \quad \text{and} \quad q a n + q' b m = k' mn
\end{align*}
From which we have
\begin{align*}
(Aq'm-Bqn) a = (kq'd -Bk' n) m \qquad (*) .
\nonumber \\
(Aq'm-Bqn) b = (Ak'm - kqd) n \qquad (**) .
\end{align*}
Choose ##q=-1, q'=1##. By Bezout's identity there exist integers ##r## and ##s## such that ##rm+sn = d##. Choose ##A=r## and ##B=s##. Then from ##(*)## we have ##a = K m## and from ##(**)## we have ##b = K' n##, where ##K## and ##K'## are integers. Therefore, with this choice, the kernel of ##\varphi## is trivial.
Thus,
\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (ra+sb) \text{ mod } d , (-a \frac{n}{d} + b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}
is a group homomorphism with trivial kernel and so we have a group isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_d \times \mathbb{Z}_l##.Finally:
Injective: Let ##i,i' \in \mathbb{Z}_m## and ##j,j' \in \mathbb{Z}_m## and assume that ##\varphi (i,j) = \varphi (i',j')##. Then ##(g^i , h^j) = (g^{i'} , h^{j'})## and, since powers ##g^i## with ##i \in \mathbb{Z}_m## distinct, it follows that ##i = i'##. Similarly, ##j = j'##. Hence, ##\varphi## is injective.
Surjective: Let ##x \in C_m \times C_n##, we have ##x = (g^i , h^j)## for some ##(i,j) \in \mathbb{Z}_m \times \mathbb{Z}_n##. Then ##\varphi (i,j) = (g^i , h^j) = x##. Hence, ##\varphi## is surjective.
Homomorphism: Let ##(i,j) , (i',j') \in \mathbb{Z}_m \times \mathbb{Z}_n##. Note ##i+j = pm + r## where ##0 \leq r \leq m-1## and Note ##i'+j' = qn + r'## where ##0 \leq r' \leq n-1##