Product of Two Finite Cyclic Groups

Click For Summary
SUMMARY

The discussion establishes that for any positive integers m and n, the direct product of cyclic groups C_m and C_n is isomorphic to the product of cyclic groups C_d and C_l, where d is the greatest common divisor (gcd) of m and n, and l is the least common multiple (lcm) of m and n. This result is a fundamental property in group theory, demonstrating the relationship between cyclic groups and their orders. The isomorphism can be formally expressed as C_m × C_n ≅ C_gcd(m,n) × C_lcm(m,n).

PREREQUISITES
  • Understanding of cyclic groups and their properties
  • Knowledge of group theory terminology, specifically isomorphism
  • Familiarity with concepts of greatest common divisor (gcd) and least common multiple (lcm)
  • Basic mathematical notation and proof techniques
NEXT STEPS
  • Study the structure of cyclic groups in detail
  • Explore the properties of isomorphic groups in group theory
  • Learn about the applications of gcd and lcm in algebra
  • Investigate advanced topics in abstract algebra, such as direct products of groups
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the properties of cyclic groups and their applications in group theory.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
For each positive integer ##m##, let ##C_m## denote a cyclic group of order ##m##. Show that for all positive integers ##m## and ##n##, there is an isomorphism ##C_m \times C_n \simeq C_d \times C_l## where ##d = \operatorname{gcd}(m,n)## and ##l = \operatorname{lcm}[m,n]##.
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
A trivial result, proven at the end, is that if ##C_m## denotes a cyclic group then ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n## where ##\mathbb{Z}_m## is the cyclic group the group under addition + modulo ##m##. So we need only prove the result for ##\mathbb{Z}_m##. The product on ##\mathbb{Z}_m \times \mathbb{Z}_n## is defined by:

\begin{align*}
(a \text{ mod } m , b \text{ mod } n) (a' \text{ mod } m , b' \text{ mod } n) = ((a+a') \text{ mod } m , (b+b') \text{ mod } n) .
\end{align*}

where ##a \text{ mod } m## means the remainder of ##a## divided by ##m##. Define a map ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow \mathbb{Z}_d \times \mathbb{Z}_l## by

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) .
\end{align*}

where ##A,B,C,## and ##D## are yet to be determined integers.

##\varphi## is a morphism:

The map ##\varphi## is a morphism as

\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi (a' \text{ mod } m , b' \text{ mod } n)
\nonumber \\
& = ((A a + B b) \text{ mod } d , (C a + D b) \text{ mod } l) ((A a' + B b') \text{ mod } d , (C a' + D b') \text{ mod } l)
\nonumber \\
& = ((A (a+a') + B (b+b')) \text{ mod } d , (C (a+a') + D (b+b')) \text{ mod } l)
\nonumber \\
& = \varphi ((a+a') \text{ mod } m , (b+b') \text{ mod } n)
\end{align*}

Ensuring ##\varphi## is well defined:

We require it to be well defined, that is replacing ##a## with ##a+km## and replacing ##b## with ##b+k'n## should result in ##A a + B b \rightarrow A a + B b + K d## and ##C a + D b \rightarrow C a + D b + K' l##. This places no constraints on the constants ##A## and ##B##. As ##l = \dfrac{mn}{d}## we must choose ##C = q \dfrac{n}{d}## and ##D = q' \dfrac{m}{d}## where ##q## and ##q'## are integers. With this choice the morphism is:

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (Aa+Bb) \text{ mod } d , (qa \frac{n}{d} + q'b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}

##\varphi## is a group homomorphism:

We confirm it is a group homomorphism:

Identity: The identity of ##\mathbb{Z}_m \times \mathbb{Z}_n## is ##(jm \text{ mod } m , j'n \text{ mod } n)## for ##j## and ##j'## integers. Then

\begin{align*}
\varphi (jm \text{ mod } m , j'n \text{ mod } n) & = \left( (Ajm+Bj'n) \text{ mod } d , (qjm \frac{n}{d} + q'j'n \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}

Inverse: By definition ##a+a^{-1} = j m## and ##b+b^{-1} = j' n##

\begin{align*}
& \varphi (a \text{ mod } m , b \text{ mod } n) \varphi(a^{-1} \text{ mod } m , b^{-1} \text{ mod } n)
\nonumber \\
& = \varphi \left( (a \text{ mod } m , b \text{ mod } n) (a^{-1} \text{ mod } m , b^{-1} \text{ mod } n) \right)
\nonumber \\
& = \varphi ((a+a^{-1}) \text{ mod } m , (b+b^{-1}) \text{ mod } n)
\nonumber \\
& = \left( (A(a+a^{-1})+B(b+b^{-1})) \text{ mod } d , (q(a+a^{-1}) \frac{n}{d} + q'(b+b') \dfrac{m}{d}) \text{ mod } l \right)
\nonumber \\
& = (kd \text{ mod } d , k'l \text{ mod } l) .
\end{align*}

Ensuring ##\varphi## is a group isomorphism:

If we can show the kernel of ##\varphi## is trivial (i.e. only contains the identity element), then ##\varphi## would be injective, and given both groups have the same number of elements (as ##mn=dl##) we would have that ##\varphi## a group isomorphism, in other words, the two groups are isomorphic. By choosing ##q,q',A##, and ##B## appropriately can we ensure that the kernel of ##\varphi## is trivial? In order for ##(a \text{ mod } m , b \text{ mod } n) \in ker \varphi##, ##a## and ##b## must satisfy:

\begin{align*}
Aa+Bb = k d \quad \text{and} \quad q a n + q' b m = k' mn
\end{align*}

From which we have

\begin{align*}
(Aq'm-Bqn) a = (kq'd -Bk' n) m \qquad (*) .
\nonumber \\
(Aq'm-Bqn) b = (Ak'm - kqd) n \qquad (**) .
\end{align*}

Choose ##q=-1, q'=1##. By Bezout's identity there exist integers ##r## and ##s## such that ##rm+sn = d##. Choose ##A=r## and ##B=s##. Then from ##(*)## we have ##a = K m## and from ##(**)## we have ##b = K' n##, where ##K## and ##K'## are integers. Therefore, with this choice, the kernel of ##\varphi## is trivial.

Thus,

\begin{align*}
\varphi (a \text{ mod } m , b \text{ mod } n) = \left( (ra+sb) \text{ mod } d , (-a \frac{n}{d} + b \dfrac{m}{d}) \text{ mod } l \right)
\end{align*}

is a group homomorphism with trivial kernel and so we have a group isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_d \times \mathbb{Z}_l##.Finally:

The ##mth## cyclic group ##C_m## with elements

\begin{align*}
C_m = \langle g \rangle = \{ g^0 , g^1 , g^2 , \dots g^{m-1} \}
\end{align*}

and the powers ##g^k## are distinct for ##0 \leq k < m## with ##g^m=e##. With multiplication defined by

\begin{align*}
g^i * g^j = \left\{
\begin{matrix}
g^{i+j} & \text{if } 0 \leq i+j < m, \\
g^{i+j-m} & \text{if } m \leq i+j < 2m - 2
\end{matrix}
\right.
\end{align*}

Define

\begin{align*}
C_n = \langle h \rangle = \{ h^0 , h^1 , h^2 , \dots h^{n-1} \}
\end{align*}

and the powers ##k^k## are distinct for ##0 \leq k < n##. Define

Define ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow C_m \times C_n## by ##\varphi (i,j) = (g^i , h^j)##.

Injective: Let ##i,i' \in \mathbb{Z}_m## and ##j,j' \in \mathbb{Z}_m## and assume that ##\varphi (i,j) = \varphi (i',j')##. Then ##(g^i , h^j) = (g^{i'} , h^{j'})## and, since powers ##g^i## with ##i \in \mathbb{Z}_m## distinct, it follows that ##i = i'##. Similarly, ##j = j'##. Hence, ##\varphi## is injective.

Surjective: Let ##x \in C_m \times C_n##, we have ##x = (g^i , h^j)## for some ##(i,j) \in \mathbb{Z}_m \times \mathbb{Z}_n##. Then ##\varphi (i,j) = (g^i , h^j) = x##. Hence, ##\varphi## is surjective.

Homomorphism: Let ##(i,j) , (i',j') \in \mathbb{Z}_m \times \mathbb{Z}_n##. Note ##i+j = pm + r## where ##0 \leq r \leq m-1## and Note ##i'+j' = qn + r'## where ##0 \leq r' \leq n-1##

\begin{align*}
\varphi ((i+i') \text{ mod m} , (j+j') \text{ mod n}) & = (g^r , h^{r'})
\nonumber \\
& = (g^{i+j - pm} , h^{i'+j'-qn})
\nonumber \\
& = (g^i , h^j) (g^{i'} , h^{j'})
\nonumber \\
& = \varphi (i , j) \varphi (i' , j') ,
\end{align*}

so ##\varphi## satisfies the homomorphism property.

Therefore, ##\varphi : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow C_m \times C_n## is an isomorphism. We conclude that ##\mathbb{Z}_m \times \mathbb{Z}_n \simeq C_m \times C_n## and hence ##C_m \times C_n \simeq \mathbb{Z}_m \times \mathbb{Z}_n##.
 
Last edited:
  • Like
Likes   Reactions: Euge

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 26 ·
Replies
26
Views
939
  • · Replies 7 ·
Replies
7
Views
3K