- #1
- 1,246
- 155
- TL;DR Summary
- product space as example of trivial fiber bundle
Hi,
I'm not a really mathematician...I've a doubt about the difference between a trivial example of fiber bundle and the cartesian product space. Consider the product space ## B \times F ## : from sources I read it is an example of trivial fiber bundle with ##B## as base space and ##F## the fiber.
As far as I understood Fiber bundle requires fibers "attached" on base space to be actually disjoint. With that in mind should we understand (conceive) the cartesian product ## B \times F ## itself as a disjoint union where there exist for instance multiple copies of F space over B ?
hoping I was able to explain the point...
I'm not a really mathematician...I've a doubt about the difference between a trivial example of fiber bundle and the cartesian product space. Consider the product space ## B \times F ## : from sources I read it is an example of trivial fiber bundle with ##B## as base space and ##F## the fiber.
As far as I understood Fiber bundle requires fibers "attached" on base space to be actually disjoint. With that in mind should we understand (conceive) the cartesian product ## B \times F ## itself as a disjoint union where there exist for instance multiple copies of F space over B ?
hoping I was able to explain the point...