I'm working out a problem that requires me to proof a result by induction. I have worked out what I think is a correct proof, but I would like for somebody to look over it and give me feedback.(adsbygoogle = window.adsbygoogle || []).push({});

Part 1: Give a reasonable definition of the symbol [tex]\sum_{k = m}^{m + n}{a}_{k}[/tex]

I first define:

[tex]

\sum_{k = m}^{m}{a}_{k} = {a }_{ m}

[/tex]

Then assuming I have defined [tex]\sum_{k = m}^{n}{a}_{k}[/tex] for a fixed n >= m, I further defined:

[tex] \sum_{ k=m}^{n+1 } {a }_{k } =( \sum_{k=m }^{ n} { a}_{ k} )+ { a}_{n+1 } [/tex]

Part 2 requires me to prove by induction that for all n >= 1, we have the assertion (call it A(n)):

[tex]\sum_{k=n+1 }^{ 2n} \frac{1 }{k } = \sum_{ m=1}^{ 2n} \frac{ {(-1) }^{m+1 } }{m } [/tex]

I approach this problem as I would have any proof by induction. The base case A(1) is true so I won't write it out here. Now, assuming the assertion is true for some k:

[tex] \frac{ 1}{ k+1} + \frac{1 }{k+2 } +...+ \frac{ 1}{ 2k} = 1 - \frac{ 1}{2 } + \frac{1 }{3 } - \frac{ 1}{ 4} +...+ \frac{ {(-1) }^{2k+1 } }{ 2k} [/tex]

where the last term on the RHS simplifies to [tex]- \frac{ 1}{2k } [/tex].

I have to show that A(k+1) is true:

(*)[tex]\frac{ 1}{ k+2} + \frac{1 }{k+3 } +...+ \frac{ 1}{ 2(k+1)} = 1 - \frac{ 1}{2 } + \frac{1 }{3 } - \frac{ 1}{ 4} +...+ \frac{ {(-1) }^{2(k+1)+1 } }{ 2(k+1)} [/tex]

where the last term on the RHS simplifies to [tex]- \frac{1 }{ 2(k+1)} [/tex]

Starting with A(k), I add [tex] \frac{1 }{ 2k+1} + \frac{ 1}{ 2k+2} - \frac{ 1}{ k+1} [/tex] to each side and obtain:

[tex]\frac{ 1}{k+1 } + \frac{ 1}{k+2 } +...+ \frac{ 1}{2k } - \frac{1 }{k+1 } + \frac{1 }{ 2k+1} + \frac{1 }{2k+2 } =1- \frac{ 1}{ 2} + \frac{ 1}{ 3} - \frac{ 1}{ 4} +...- \frac{1 }{2k+2 } - \frac{1 }{ k+1} + \frac{ 1}{ 2k+1} + \frac{1 }{2k+2 }

[/tex]

After subtracting out the two like terms on each side, the left hand side becomes the sum

[tex] \sum_{ k=(n+1)+1}^{ 2(n+1)} \frac{1 }{k } [/tex]

and the terms [tex] \frac{ 1}{ 2k+2}- \frac{ 1}{ k+1} [/tex] on the right simplify to [tex] \frac{ -1}{2(k+1) } [/tex], so the right side resembles the right side in (*). Therefore, the RHS becomes the sum [tex] \sum_{ m=1}^{2(n+1) } \frac{ {(-1) }^{m+1} }{2m } [/tex]

I'm wasn't sure if I was supposed to use the definition of part 1 in part 2 and I didn't, but I'm wondering if that would have made things easier. Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof by induction of a problem

**Physics Forums | Science Articles, Homework Help, Discussion**