Proof of commutative property in exponential matrices using power series

  • Thread starter Paalfaal
  • Start date
I'm trying to prove eA eB = eA + B using the power series expansion eXt = [itex]\sum_{n=0}^{\infty}[/itex]Xntn/n!

and so
eA eB = [itex]\sum_{n=0}^{\infty}[/itex]An/n! [itex]\sum_{n=0}^{\infty}[/itex]Bn/n!

I think the binomial theorem is the way to go: (x + y)n = [itex]\displaystyle \binom{n}{k}[/itex] xn - k yk = [itex]\displaystyle \binom{n}{k}[/itex] yn - k xk, ie. it's only true for AB = BA.

I'm really bad at manipulating series and matrices. Could I please get some hints?
Last edited:


Gold Member
You are correct that the binomial theorem will be useful. The theorem you're trying to prove IS only valid if AB = BA, so the fact that the binomial theorem breaks down otherwise is not a concern. Personally I think I would find it easier to start from the opposite direction than you

[tex] \sum_{n = 0}^\infty \frac{(A + B)^n}{n!} = \sum_{n = 0}^\infty \frac{1}{n!} \sum_{k=0}^n \left(
n \\
k \\
\right) A^k B^{n-k} [/tex]
[tex] = \sum_{n = 0}^\infty \sum_{k=0}^n \frac{1}{(n-k)!(k)!}A^k B^{n-k}[/tex]

Now what I'll do is pull out all the terms where [itex]k=0[/itex] from the sum

[tex]= I \left( I + B + \frac{1}{2} B^2 + \frac{1}{6} B^3 + \ldots \right) + \sum_{n = 1}^\infty \sum_{k=1}^n \frac{1}{(n-k)!(k)!}A^k B^{n-k}[/tex]

Can you follow what I did there? Notice the lower bound on the sums changed. Let me do it for two more terms so you definitely get the idea

[tex] = I \left( I + B + \frac{1}{2} B^2 + \frac{1}{6} B^3 + \ldots \right) [/tex]
[tex] + A \left( I + B + \frac{1}{2} B^2 + \frac{1}{6} B^3 + \ldots \right) [/tex]
[tex] + \frac{A}{2} \left( I + B + \frac{1}{2} B^2 + \frac{1}{6} B^3 + \ldots \right) [/tex]
[tex]+ \sum_{n = 3}^\infty \sum_{k=3}^n \frac{1}{(n-k)!(k)!}A^k B^{n-k}[/tex]

Notice that after [itex]k \ge 2[/itex] we need to start pulling out factors of [itex]\frac{1}{k!}[/itex]. Okay now can you see how this process would continue? How would you write down the above idea using the sum notation instead of the [itex]\ldots[/itex] I used? Once you figure that out I think you'll be able to prove your result.


Gold Member
By the way if you're trying to write a rigorous proof, I would concentrate on proving the first statement I made where I pulled out some terms. Then you can easily pull out an A factor, and shift indices; and then work by induction.


Staff Emeritus
Science Advisor
Gold Member
It might be a good idea to first prove the formula for products of series and then use that result along with the binomial theorem to prove the result you want.
$$\bigg(\sum_{n=0}^\infty a_n\bigg)\bigg(\sum_{k=0}^\infty b_n\bigg)=\sum_{n=0}^\infty\sum_{k=0}^n a_k b_{n-k}.$$
[tex] + \frac{A}{2} \left( I + B + \frac{1}{2} B^2 + \frac{1}{6} B^3 + \ldots \right) [/tex]
I think it should be an A2 instead of A this line..

However, it made sense now. Thank you so much! Very helpful :smile:


Gold Member
I think it should be an A2 instead of A this line..

However, it made sense now. Thank you so much! Very helpful :smile:
You are correct.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads