Proof of Convergence: Nested Radicals with Constant Sum on May 8, 2019

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the equation $\sqrt[3]{9+9\sqrt[3]{9+9\sqrt[3]{9+\cdots}}} - \sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\sqrt{8-\sqrt{8+\cdots}}}}}} = 1$. The proof involves evaluating the nested radicals and demonstrating their convergence to the specified values. Olinguito provided the correct solution, showcasing the mathematical techniques necessary for handling such infinite expressions.

PREREQUISITES
  • Understanding of nested radicals and their convergence properties
  • Familiarity with cube roots and square roots
  • Basic knowledge of limits and infinite series
  • Experience with mathematical proof techniques
NEXT STEPS
  • Study the convergence of nested radicals in detail
  • Explore advanced techniques in mathematical proofs
  • Learn about the properties of cube roots and their applications
  • Investigate the use of limits in evaluating infinite expressions
USEFUL FOR

Mathematicians, students studying advanced algebra, and anyone interested in the properties of nested radicals and their convergence.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that $\sqrt[3]{9+9\sqrt[3]{9+9\sqrt[3]{9+\cdots}}} - \sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\sqrt{8-\sqrt{8+\cdots}}}}}} = 1$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to Olinguito for his correct solution(Cool), which you can find below:

Let $x=\sqrt[3]{9+9\sqrt[3]{9+\cdots}}=\sqrt[3]{9+9x}$.

$\therefore\ x^3=9x+9\quad\ldots\fbox1$.

Then
$$(((x-1)^2-8)^2-8)^2$$
$=\ ((x^2-2x-7)^2-8)^2$

$=\ (x^4-4x^3-10x^2+28x+41)^2$

$=\ ((9x+9)(x-4)-10x^2+28x+41)^2\quad\text{(using}\ \fbox1)$

$=\ (-x^2+x+5)^2$

$=\ x^4-2x^3-9x^2+10x+25$

$=\ (9x+9)(x-2)-9x^2+10x+25\quad\text{(using}\ \fbox1\ \text{again)}$

$=\ x+7$.

$\therefore\ ((u^2-8)^2-8)^2\ =\ u+8$ where $u=x-1$.

It remains to show that $u=\sqrt{8-\sqrt{8-\sqrt{8+u}}}$.

Now, if $f(x)=x^3-9x-9$, then $f(3.41)=-0.038179<0$ and $f(3.42)=0.221688>0$. Hence $3.41<x<3.42$ $\implies$ $2.41<u<2.42$. Thus
$$\sqrt8>2.42>u>2.41$$
$\implies\ 8>u^2>5.8081$

$\implies\ 0<8-u^2<2.1919<\sqrt8$

$\implies\ (8-u^2)^2<8$

Hence
$$u+8\ =\ ((u^2-8)^2-8)^2$$
$\implies\ \sqrt{8+u}\ =\ |(u^2-8)^2-8|\ =\ 8-(u^2-8)^2$

$\implies\ 8-\sqrt{8+u}\ =\ (u^2-8)^2$

$\implies\ \sqrt{8-\sqrt{8+u}}\ =\ |u^2-8|\ =\ 8-u^2$

$\implies\ u^2\ =\ 8-\sqrt{8-\sqrt{8+u}}$

$\implies\ u\ =\ \sqrt{8-\sqrt{8-\sqrt{8+u}}}$

as required.
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K