MHB Proof of the Division Algorithm

matqkks
Messages
280
Reaction score
5
In many books on number theory they define the well ordering principle (WOP) as:
Every non- empty subset of positive integers has a least element.
Then they use this in the proof of the division algorithm by constructing non-negative integers and applying WOP to this construction. Is it possible to apply the WOP to a subset of non-negative integers? Am I being too pedantic?
 
Mathematics news on Phys.org
It's rather obvious isn't it? "Applying the WOP to a subset of non-negative integers" would simply mean that, given X, a subset of the non-negative integers, any subset of X has a least member. And that is true because any subset of X is also a subset of the non-negative integers.

If that is not what you mean then please explain what you mean by "apply the WOP to a subset of non-negative integers".

 
Last edited by a moderator:
Yes of course. I just had a senior moment.
Thanks.
 
There are those of use who live in "senior moments"! We are called "seniors".
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top