MHB Proof of the Division Algorithm

AI Thread Summary
The discussion centers on the application of the well ordering principle (WOP) to subsets of non-negative integers in the context of the division algorithm. It confirms that since any subset of non-negative integers also adheres to the WOP, it is valid to apply the principle in this scenario. The conversation touches on the clarity of the concept, with one participant questioning if their understanding was overly pedantic. Ultimately, the dialogue reflects a light-hearted acknowledgment of occasional confusion regarding mathematical principles. The participants agree on the correctness of applying WOP to non-negative integers.
matqkks
Messages
280
Reaction score
5
In many books on number theory they define the well ordering principle (WOP) as:
Every non- empty subset of positive integers has a least element.
Then they use this in the proof of the division algorithm by constructing non-negative integers and applying WOP to this construction. Is it possible to apply the WOP to a subset of non-negative integers? Am I being too pedantic?
 
Mathematics news on Phys.org
It's rather obvious isn't it? "Applying the WOP to a subset of non-negative integers" would simply mean that, given X, a subset of the non-negative integers, any subset of X has a least member. And that is true because any subset of X is also a subset of the non-negative integers.

If that is not what you mean then please explain what you mean by "apply the WOP to a subset of non-negative integers".

 
Last edited by a moderator:
Yes of course. I just had a senior moment.
Thanks.
 
There are those of use who live in "senior moments"! We are called "seniors".
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top