Proof that neutrino flavor oscillation implies nonzero neutrino mass?

  • A
  • Thread starter strangerep
  • Start date
  • #1
strangerep
Science Advisor
3,274
1,244
[This is a reference request.]

I'm dissatisfied with the "proofs" I've found so far. E.g., in Kayser's review from 2008, in the paragraph following his eq(1.4), he assumes a propagation amplitude Prop##(\nu_i)## of ##\exp(-im_i \tau_i)##, where "##m_i## is the mass of the ##\nu_i## and ##\tau_i## is the proper time that elapses in the ##\nu_i## rest frame during its propagation". I.e., he assumes ##m_i \ne 0##. Thus, he proves only that nonzero neutrino masses imply neutrino flavor oscillation, but not the converse, afaict.

Can anyone point me to better references, pls?
 

Answers and Replies

  • #2
Gaussian97
Homework Helper
675
401
As far as I know, neutrino oscillation only depends on ##\Delta m^2##, i.e. the difference of the square of masses, so the fact that we observe ##\nu_e - \nu_\mu## and ##\nu_e - \nu_\tau## oscillation tells us that the masses of the neutrinos must be non-degenerate (and therefore at most only one can be 0).
I don't know what are good references, although neutrino oscillation is covered in a lot of books.
Usually, a good idea is to start with PDG and follow the references they give.
 
  • Like
Likes Orodruin and vanhees71
  • #3
George Jones
Staff Emeritus
Science Advisor
Gold Member
7,490
1,228
[This is a reference request.]

I'm dissatisfied with the "proofs" I've found so far. E.g., in Kayser's review from 2008, in the paragraph following his eq(1.4), he assumes a propagation amplitude Prop##(\nu_i)## of ##\exp(-im_i \tau_i)##, where "##m_i## is the mass of the ##\nu_i## and ##\tau_i## is the proper time that elapses in the ##\nu_i## rest frame during its propagation". I.e., he assumes ##m_i \ne 0##. Thus, he proves only that nonzero neutrino masses imply neutrino flavor oscillation, but not the converse, afaict.

Can anyone point me to better references, pls?
Isn't this the way physics usually proceeds? Let ##T## be a particular theory, and ##E## be a particular experiment result. Now suppose that it can be show that ##T \Rightarrow E##. If an actual experiment is performed and ##E## is the result, we take this as evidence for, but not proof of, ##T##.

Theories involving massive neutrinos predict oscillations, which predict experiment results ##E_i##. Actual experiments produce some of these ##E_i##, which we take as evidence that (at least some) neutrinos have mass.
 
  • #4
1,733
289
Since oscillations only require mass difference, how does "neutrinos having mass", by implication all of them, lead to oscillations, or vice versa? If some neutrinos have nonzero mass and other/s zero, would oscillations still result? And vice versa, if neutrinos had masses but these were equal, it would still have no oscillations.
 
  • #5
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
17,395
7,289
Since oscillations only require mass difference, how does "neutrinos having mass", by implication all of them, lead to oscillations, or vice versa? If some neutrinos have nonzero mass and other/s zero, would oscillations still result? And vice versa, if neutrinos had masses but these were equal, it would still have no oscillations.
It does not. It is a somewhat simplified statement. The conclusion is that there is flavor mixing in the lepton sector and that neutrinos have different masses. From that follows that at most one neutrino is massless. You can argue about how natural it would be to have a single massless neutrino when the others have non-zero masses, but there are indeed neutrino mass models where this could happen.
 
  • Like
Likes ohwilleke and vanhees71
  • #6
35,724
12,308
If the masses are all the same (e.g. 0) then the flavor eigenstates (and every other state) are also mass eigenstates and no mixing happens. This is analogous to e.g. neutral meson mixing where we use the observed mixing to determine that there is a mass difference.
 
  • Like
  • Informative
Likes ohwilleke, strangerep and vanhees71

Related Threads on Proof that neutrino flavor oscillation implies nonzero neutrino mass?

Replies
14
Views
6K
Replies
10
Views
5K
  • Last Post
Replies
1
Views
902
  • Last Post
Replies
8
Views
2K
Replies
2
Views
1K
  • Last Post
Replies
17
Views
5K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
6
Views
4K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
21
Views
2K
Top