MHB Proof Using Induction: Discrete Maths Problem Solving

  • Thread starter Thread starter Ryuna
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
The discussion focuses on solving discrete mathematics problems using mathematical induction. A user seeks assistance with proving a specific summation formula, and the importance of demonstrating the base case is emphasized. Participants suggest that after confirming the base case, the user should establish an induction hypothesis and utilize recursion for the induction step. Hints are provided to guide the user in structuring their proof. The conversation highlights the collaborative nature of problem-solving in discrete mathematics.
Ryuna
Messages
2
Reaction score
0
Can someone help me solve the following problems from Discrete Maths, using induction to prove them
View attachment 2554
Thanks in advance
 

Attachments

  • Untitled.png
    Untitled.png
    5.2 KB · Views: 106
Physics news on Phys.org
Hello, and welcome to MHB! :D

In the future, we ask that you post no more than two questions in a thread and that you show what you have tired so we know where you are stuck, and can best help.

I am assuming the first one is instead:

$$\sum_{k=1}^n\left(3\cdot2^{k-1}\right)=3\left(2^n-1\right)$$

The first step is to demonstrate that the base case (for $n=1$) is true. Have you done that?
 
^Right, I'll keep that in mind.

And the case is true for n=1. These are practice questions for my exam and I was looking for key answers to use as indicators. I'll be back after trying more.

could you give me a hint on how to start with the last one?
 
Ryuna said:
...could you give me a hint on how to start with the last one?

Well, after showing the base case is true, you want to state your induction hypothesis. It appears to me that using the given recursion will be key to your induction step. I would write the recursion in terms of $n+1$, and see what can be done with that.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K