Propagation of uncertainty with some constants

In summary, the OP wants to find the uncertainty in a function given a value and a function that calculates the propagation of uncertainty. However, he is not sure how to do it. He suggests using a simplified version of Differential Calculus that uses ω and δω2.f
  • #1
379
19
TL;DR Summary
How to calculate the propagation of uncertainty with some constants
Hi,

I have a value ##100 \pm 0.1## and a function ##\frac{V}{E} = \frac{1}{\sqrt{1 + (\omega r c)^2}}## and I would like to find the uncertainty.
Where r = 1000 and c = ##5 \cdot 10^{-8}## are constants.
However, I'm not sure to understand how.

Here's what I think and did.
Since I multiply the uncertainty by a constant.

##\sigma= (1000 \cdot 5 \cdot 10^{-8}) \cdot 0.1 = ##

and then for the power
##\sigma= \frac{2 (5\cdot 10^{-6}) \cdot (\sqrt{\omega r c)}}{\omega r c}##

Where I'm using this formula ##\frac{\sigma_f}{f} = \frac{n \sigma_a}{a}##
 
  • #2
Say ##Q \equiv V/E##, then ##\sigma(Q) = (\partial Q/\partial \omega) \sigma(\omega) = -(\omega r^2 c^2 / [1+(\omega rc)^2]^{3/2}) \sigma(\omega)##
 
  • #3
Summary:: How to calculate the propagation of uncertainty with some constants

Hi,

I have a value ##100 \pm 0.1## and a function ##\frac{V}{E} = \frac{1}{\sqrt{1 + (\omega r c)^2}}## and I would like to find the uncertainty.
What variable is the value that you have? And what uncertainty do you want to find?
 
  • #4
What variable is the value that you have? And what uncertainty do you want to find?
The value is 100 and since the value has an uncertainty If I use this value in a formula I have to take into account the propagation of this uncertainty.
 
  • #5
The value is 100
The value of what is 100? I see three possible variables that could be 100, but you just keep saying that “the value” is 100 without any hint which value you are talking about.

I am done here. You have wasted people’s time here twice. I could have already answered your question if you had bothered to be clear either the first time or when I asked for clarification. I am not going to waste my time any more.
 
  • Like
Likes Vanadium 50
  • #6
100 is just an arbitrary variable, it could be 1000 it could be 10. I gave an example to show exactly what I meant. I could use any other function with 1 variable and some constant. It could be ##\omega##, r or c. That is why I put those 3 together. However, since I wrote that r = 1000 and c = 5E-8, I don't know what you mean?

I don't understand why you tell me this is not clear and that I waste people's time. I thought it was obvious that I was talking about ##\omega##, I mean I didn't even think about if it was clear or not, I just wrote as it, since r and c has their values, I really thought it was obvious, my bad if it wasn't.

Maybe I thought It was clear because I don't understand this concept really well, which is possible and that's why I'm asking this question.
 
Last edited by a moderator:
  • #7
If the OP had only made it clearer by explicitly choosing one of ω, r or c then there would be no problem here. It was probably 'too obvious' for him.
It does show, however, how the algebraic approach make things much clearer (albeit a bit less friendly, initially). Just expanding the equation with ω replaced by ω+δω would show what's going on. Ignore terms higher than δω2 and you're there.
 
  • #9
@EpselonZero I wrote down the answer in post #2, does it make sense?
Yes - except that it's very minimalist for the OP. It's actually harder, conceptually than your two line answer implies. I suspect that answer just appeared as a bit of a blur and he passed over it to encounter getting his backside kicked about bad presentation :wink:.
@EpselonZero The OP needed help digging himself out of the quandary.
I'd suggest that
1. Numbers should be avoided; stick with all the symbols until the end.
2. Add the uncertainty δω to ω and insert (ω+δω) where you had ω. Expand the resulting expression and ignore terms with δω2 and then reach for your calculator.
I know that's the basis of Differential Calculus but there's no harm in being explicit when explaining things to an elementary question.
 
  • Like
Likes ergospherical

Suggested for: Propagation of uncertainty with some constants

Replies
1
Views
2K
Replies
1
Views
2K
Replies
13
Views
921
Replies
6
Views
2K
Replies
16
Views
2K
Replies
0
Views
604
Replies
9
Views
1K
Replies
4
Views
2K
Replies
3
Views
6K
Back
Top