MHB Prove 19 < S < 20: 2008/1000-2008/1009

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$ \text{S}=\dfrac {2008}{1000} + \dfrac {2008}{1001} + \dfrac {2008}{1002}+---------+\dfrac {2008}

{1009}$

$\text {prove} :\,\, 19 < \text {S} <20 $

note :no use of calculator or computer
 
Mathematics news on Phys.org
Re: prove : 19< S < 20

Albert said:
$ \text{S}=\dfrac {2008}{1000} + \dfrac {2008}{1001} + \dfrac {2008}{1002}+---------+\dfrac {2008}

{1009}$

$\text {prove} :\,\, 19 < \text {S} <20 $

note :no use of calculator or computer

Without a calculator... but it still takes some calculations.

Since $1 - x \le \frac 1 {1+x} \le 1 - x + x^2$,

and $S = \sum_k \frac {2008}{1000 + k} = \sum_k \frac {2008}{1000} \frac {1}{1 + (k/1000)}$,

it follows that

$$\sum_k \frac {2008}{1000} (1 - \frac k {1000}) \le S \le \sum_k \frac {2008}{1000} (1 - \frac k {1000} + (\frac k {1000})^2)$$

$$\frac {2008}{1000}(10 - \frac {\sum k} {1000}) \le S \le \frac {2008}{1000}(10 - \frac {\sum k} {1000} + \frac {\sum k^2} {10^6})$$

$$\frac {2008}{1000}(10 - \frac {10\cdot (0+9)/2} {1000}) \le S \le \frac {2008}{1000}(10 - \frac {10\cdot (0+9)/2} {1000} + \frac {\frac 1 6 10(10+1)(2\cdot 10 +1)} {10^6})$$

$$20.08 - \frac {45 \cdot 2008}{10^6} \le S \le 20.08 - \frac {45 \cdot 2008}{10^6} + \frac {2008 \cdot \frac 1 6 \cdot 10 \cdot 11 \cdot 19}{10^9}$$

$$19 \le 19.98 \le S \le 19.99 + 0.0006024 \le 19.9906024 \le 20 \qquad \blacksquare$$
 
Last edited:
Re: prove : 19< S < 20

$ 19=\dfrac {10 \times 1919}{1010} < \dfrac {10 \times 2008}{1009}<S ----------(1) $

$ \therefore 19< S $

To prove S<20 is a little more tricky ,please try it ,I will upload later
 
Last edited:
Re: prove : 19< S < 20

Albert said:
$ 19=\dfrac {10 \times 1919}{1010} < \dfrac {10 \times 2008}{1009}<S ----------(1) $

$ \therefore 19< S $

To prove S<20 is a little more tricky ,please try it ,i will upload later

Yeah, I got that one.
It was the 20 that I found trickier.
When I got that one, I took the lower bound along, since that was part of the upper bound anyway.
 
Re: prove : 19< S < 20

$\text {Let} \,\, x=1000$
$S=(2x+8)[\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+2}+------------+\dfrac{1}{x+9}]$
$=(2x+8)[(\dfrac{1}{x}+\dfrac{1}{x+9})+------------+(\dfrac{1}{x+4}+\dfrac{1}{x+5}) ] $
$=(2x+8)[(\dfrac{2x+9}{x^2+9x}+------------+\dfrac{2x+9}{x^2+9x+20}) ] $
$=(2x+8)(2x+9)[(\dfrac{1}{x^2+9x}+------------+\dfrac{1}{x^2+9x+20}) ] $
$<(\dfrac{4x^2+34x+72}{x^2+9x})\times 5<(\dfrac{4x^2+36x}{x^2+9x})\times 5=4\times 5=20 $
$\therefore S<20$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top