Prove ##a \cdot 1 = a = 1 \cdot a## for ##a \in \mathbb{N}##

Click For Summary
The discussion focuses on proving the equation a · 1 = a = 1 · a for a ∈ ℕ using Peano postulates. The author defines a set G containing elements z in ℕ that satisfy the equation, aiming to show G equals ℕ. By establishing that 1 is in G and using the properties of multiplication and addition defined in the book, the author demonstrates that if r is in G, then s(r) is also in G. This leads to the conclusion that G must equal ℕ, thus proving the original equation for all natural numbers a. The proof is confirmed as correct by participants in the discussion.
issacnewton
Messages
1,035
Reaction score
37
Homework Statement
Prove ##a \cdot 1 = a = 1 \cdot a## for ##a \in \mathbb{N}## using Peano postulates
Relevant Equations
Peano postulates
I have to prove ##a \cdot 1 = a = 1 \cdot a## for ##a \in \mathbb{N}##.
The book I am using ("The real numbers and real analysis" by Ethan Bloch) defines Peano postulates little differently.
Following is a set of Peano postulates I am using. (Axiom 1.2.1 in Bloch's book)

There exists a set ##\mathbb{N}## with an element ##1 \in \mathbb{N}## and a function ##s: \mathbb{N} \rightarrow \mathbb{N} ## that satisfy the following three properties.

1) There is no ##n \in \mathbb{N}## such that ##s(n) = 1##

2) The function ##s## is injective.

3) Let ##G \subseteq \mathbb{N}## be a set. Suppose that ##1 \in G##, and that if ##g \in G## then ##s(g) \in G##. Then ## G = \mathbb{N} ##

And addition operation is given in Theorem 1.2.5 as follows

There is a unique binary operation ##+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##

a. ## n + 1 = s(n) ##
b. ## n + s(m) = s(n + m) ##

Multiplication operation is given in Theorem 1.2.6 as follows

There is a unique binary operation ## \cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##

a. ##n \cdot 1 = n ##
b. ## n \cdot s(m) = (n \cdot m) + n ##

with this background, we proceed to the proof. Let us define a set

$$ G = \{ z \in \mathbb{N} | z \cdot 1 = z = 1 \cdot z \} $$

We want to prove that ##G = \mathbb{N} ##. For this purpose, we will use part 3) of Peano postulates given above. Obviously, ## G \subseteq \mathbb{N} ##. From the multiplication definition given above, we have ## 1 \cdot 1 = 1 = 1 \cdot 1##. And since ## 1 \in \mathbb{N}##, it follows that ## 1 \in G##. Suppose ## r \in G##. This means that ## r \in \mathbb{N} ## and

$$ r \cdot 1 = r = 1 \cdot r $$

Now, from part a) of multiplication operation given above, it follows that

$$ s(r) \cdot 1 = s(r) \cdots\cdots (1)$$

Now from part b) of multiplication operation given above, it follows that

$$ 1 \cdot s(r) = (1 \cdot r) + 1 $$

And since ## r \in G##, we have ## 1 \cdot r = r ##. Hence

$$ 1 \cdot s(r) = r + 1 $$

And using addition operation definition, ## r + 1 = s(r) ##, so

$$ 1 \cdot s(r) = s(r) \cdots\cdots (2) $$

Collecting equation 1 and 2, we have

$$ s(r) \cdot 1 = s(r) = 1 \cdot s(r) $$

Since ##s(r) \in \mathbb{N} ##, it follows that ## s(r) \in G##. So, ##r \in G## implies that ## s(r) \in G##. Using part 3) of the Peano postulates,
it follows that ## G = \mathbb{N}##.

Now if ##a \in \mathbb{N} ##, ##a \in G## and it follows that

$$ a \cdot 1 = a = 1 \cdot a $$

Is the proof correct ?

Thanks
 
  • Like
Likes bhobba and PeroK
Physics news on Phys.org
Looks good to me.
 
  • Like
Likes bhobba and issacnewton
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
4K
Replies
1
Views
2K