MHB Prove A_n is an integer for all n in N

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The discussion centers on proving that \( A_n = (a^2 + b^2)^n \sin n\theta \) is an integer for all natural numbers \( n \), given \( a, b \in \mathbb{N} \) with \( a > b \) and \( \sin \theta = \frac{2ab}{a^2 + b^2} \). The relationship between \( \sin n\theta \) and the properties of sine functions is explored, particularly how it relates to integer values. Participants emphasize the use of mathematical induction and properties of sine to establish the integer nature of \( A_n \). The proof hinges on the fact that both \( (a^2 + b^2)^n \) and \( \sin n\theta \) yield integer results under the given conditions. Ultimately, the conclusion is that \( A_n \) is indeed an integer for all \( n \in \mathbb{N} \).
Albert1
Messages
1,221
Reaction score
0
$a,b\in N ,\, and \,\, a>b,\,\, sin \,\theta=\dfrac {2ab}{a^2+b^2}$

(where $0<\theta <\dfrac {\pi}{2}$)

$A_n=(a^2+b^2)^nsin \,n\theta$

prove :$A_n$ is an integer for all n $\in N$
 
Mathematics news on Phys.org
Re: prone A_n is an integer for all n in N

we have

$\sin \theta = \frac{2ab}{a^2+b^2}$

so as $\cos \theta \gt 0$

$\cos \theta = \frac{a^2- b^2}{a^2+b^2}$

hence $\sin 2\theta = 2 \ sin\theta \cos \theta $
= $\frac{2ab(a^2-b^2)}{(a^2+b^2)^2}$

$cos 2\theta = 2 \cos^2\theta -1 = 2 (\frac{a^2- b^2}{a^2+b^2})^2 - 1$
= $\frac{2(a^2- b^2)^2 - (a^2 + b^2 )^2}{(a^2+b^2)^2}$

so $\sin \theta,\cos \theta,\sin 2\theta,\cos 2\theta$ are of the form $\frac{I}{(a^2+b^2)^n}$ for n = 1 and 2

let

$\sin k\theta = \frac{A_{k}}{(a^2+b^2)^k}$

$\cos k\theta = \frac{B_{k}}{(a^2+b^2)^k}$

for k = 1 to n

then
$sin (n+1)\theta = \sin n\theta \cos \theta +\sin \theta \cos n \theta $
= $\frac{A_{n}}{(a^2+b^2)^n} \frac{B_{1}}{a^2+b^2} + \frac{A_{1}}{(a^2+b^2)} \frac{B_{n}}{(a^2+b^2)^n}$
= $\frac{A_{n}B_{1} + A_{1}B_{n}}{(a^2+b^2)^{n+1}}$

if the form is true for 1 to n then it is true for n+ 1 for $\sin$ But we depend on $\cos$ so we need to prove for $\cos$

$cos (n+1)\theta = \cos n\theta \cos \theta - \sin n\theta \sin \theta $
= $\frac{B_{n}}{(a^2+b^2)^n} \frac{B_{1}}{a^2+b^2} - \frac{A_{n}}{(a^2+b^2)^n} \frac{A_{1}}{(a^2+b^2}$
= $\frac{B_{n}B_{1} - A_{n}A_{1}}{(a^2+b^2)^{n+1}}$so if it is true for sin and cos for 1 and n then it is true for n+ 1
as we have proved for 2 and then induction step

so $\ sin n\theta = \frac{I}{(a^2+b^2)^n}$

or $\sin n \theta (a^2+b^2)^n$ is integer

hence proved
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
950
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K