Prove A_n is an integer for all n in N

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion centers on proving that the expression \( A_n = (a^2 + b^2)^n \sin(n\theta) \) is an integer for all natural numbers \( n \), given \( a, b \in \mathbb{N} \) with \( a > b \) and \( \sin \theta = \frac{2ab}{a^2 + b^2} \). The proof leverages properties of sine functions and integer arithmetic, establishing that \( A_n \) remains an integer due to the integer nature of \( (a^2 + b^2)^n \) and the specific values of \( \sin(n\theta) \) derived from the initial conditions. The conclusion confirms that \( A_n \) is indeed an integer for all \( n \in \mathbb{N} \).

PREREQUISITES
  • Understanding of trigonometric identities and properties of sine functions
  • Familiarity with natural numbers and integer properties
  • Knowledge of mathematical induction techniques
  • Basic algebra involving polynomials and their integer results
NEXT STEPS
  • Study the properties of sine functions in relation to integer values
  • Explore mathematical induction proofs for sequences and series
  • Investigate the implications of \( \sin(n\theta) \) for various \( n \)
  • Learn about polynomial expressions and their behavior under integer constraints
USEFUL FOR

Mathematicians, educators, and students interested in number theory, trigonometry, and proofs involving integer sequences.

Albert1
Messages
1,221
Reaction score
0
$a,b\in N ,\, and \,\, a>b,\,\, sin \,\theta=\dfrac {2ab}{a^2+b^2}$

(where $0<\theta <\dfrac {\pi}{2}$)

$A_n=(a^2+b^2)^nsin \,n\theta$

prove :$A_n$ is an integer for all n $\in N$
 
Mathematics news on Phys.org
Re: prone A_n is an integer for all n in N

we have

$\sin \theta = \frac{2ab}{a^2+b^2}$

so as $\cos \theta \gt 0$

$\cos \theta = \frac{a^2- b^2}{a^2+b^2}$

hence $\sin 2\theta = 2 \ sin\theta \cos \theta $
= $\frac{2ab(a^2-b^2)}{(a^2+b^2)^2}$

$cos 2\theta = 2 \cos^2\theta -1 = 2 (\frac{a^2- b^2}{a^2+b^2})^2 - 1$
= $\frac{2(a^2- b^2)^2 - (a^2 + b^2 )^2}{(a^2+b^2)^2}$

so $\sin \theta,\cos \theta,\sin 2\theta,\cos 2\theta$ are of the form $\frac{I}{(a^2+b^2)^n}$ for n = 1 and 2

let

$\sin k\theta = \frac{A_{k}}{(a^2+b^2)^k}$

$\cos k\theta = \frac{B_{k}}{(a^2+b^2)^k}$

for k = 1 to n

then
$sin (n+1)\theta = \sin n\theta \cos \theta +\sin \theta \cos n \theta $
= $\frac{A_{n}}{(a^2+b^2)^n} \frac{B_{1}}{a^2+b^2} + \frac{A_{1}}{(a^2+b^2)} \frac{B_{n}}{(a^2+b^2)^n}$
= $\frac{A_{n}B_{1} + A_{1}B_{n}}{(a^2+b^2)^{n+1}}$

if the form is true for 1 to n then it is true for n+ 1 for $\sin$ But we depend on $\cos$ so we need to prove for $\cos$

$cos (n+1)\theta = \cos n\theta \cos \theta - \sin n\theta \sin \theta $
= $\frac{B_{n}}{(a^2+b^2)^n} \frac{B_{1}}{a^2+b^2} - \frac{A_{n}}{(a^2+b^2)^n} \frac{A_{1}}{(a^2+b^2}$
= $\frac{B_{n}B_{1} - A_{n}A_{1}}{(a^2+b^2)^{n+1}}$so if it is true for sin and cos for 1 and n then it is true for n+ 1
as we have proved for 2 and then induction step

so $\ sin n\theta = \frac{I}{(a^2+b^2)^n}$

or $\sin n \theta (a^2+b^2)^n$ is integer

hence proved
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
988
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K