MHB Prove an equation has no integer solution

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The discussion focuses on proving that the polynomial equation \(x^4 - px^3 - qx^2 - rx - s = 0\) has no integer solutions for positive integers \(p, q, r, s\) where \(p \geq q \geq r \geq s\). Participants confirm the validity of the approach and share insights on similar proofs that utilize the same principles. The conversation emphasizes the importance of understanding polynomial behavior and integer properties in the context of this equation. Ultimately, the consensus is that the equation cannot yield integer solutions under the specified conditions. The proof relies on analyzing the structure of the polynomial and the constraints imposed by the integer values of \(p, q, r, s\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p,\,q,\,r,\,s$ be positive integers such that $p\ge q\ge r \ge s$.

Prove that the equation $x^4-px^3-qx^2-rx-s=0$ has no integer solution.
 
Mathematics news on Phys.org
anemone said:
Let $p,\,q,\,r,\,s$ be positive integers such that $p\ge q\ge r \ge s$

Prove that the equation $x^4-px^3-qx^2-rx-s=0----(1)$ has no integer solution.
by" Rational zero theorem"
if m is the integer solution of (1)
then : s is a multiple of $\mid m\mid $

but :$m^4-pm^3-qm^2-rm-s\neq 0$
for $p\ge q\ge r\ge s \ge\mid m \mid>0$
and $p,q,r,s\in N$
 
Last edited:
Albert said:
by" Rational zero theorem"
if m is the integer solution of (1)
then : s is a multiple of $\mid m\mid $

but :$m^4-pm^3-qm^2-rm-s\neq 0$
for $p\ge q\ge r\ge s \ge\mid m \mid>0$
and $p,q,r,s\in N$

Hi Albert,

Your concept is correct, thanks for participating. :)

Solution of other that based on the same principle:

Suppose that $m$ is an integer root of $x^4-px^3-qx^2-rx-s=0$ . As $s\ne 0$, we have $m\ne 0$. Suppose now that $m>0$, then $m^4-pm^3=qm^2+rm+s>0$ and hence $m>p\ge s$. On the other hand, $s=m(m^3-pm^2-qm-r)$ and hence $m$ divides $s$, a contradiction.

If $m<0$, then writing $n=-m>0$, we have $n^4+pn^3-qn^2+rn-s=n^4+n^2(pn-q)+(rn-s)>0$, a contradiction. This proves that the given polynomial has no integer roots.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top