Prove an identity with binomial coefficients

Click For Summary
SUMMARY

The identity $\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$ has been discussed with a focus on proving it through various methods. Participants noted the challenges of using proof by induction and shared insights on numerical evaluations for small values of \( n \), particularly \( n=4 \). A referenced paper titled "Alternating sums of the reciprocals of binomial coefficients" may provide additional context and methodologies for tackling this problem.

PREREQUISITES
  • Understanding of binomial coefficients and their properties
  • Familiarity with alternating series and their convergence
  • Basic knowledge of mathematical induction
  • Ability to manipulate and simplify algebraic expressions
NEXT STEPS
  • Read the paper "Alternating sums of the reciprocals of binomial coefficients" for deeper insights
  • Explore advanced techniques in combinatorial proofs
  • Investigate numerical methods for evaluating binomial coefficient sums
  • Learn about generating functions and their applications in combinatorial identities
USEFUL FOR

Mathematicians, students studying combinatorics, and anyone interested in advanced proof techniques related to binomial coefficients and series summation.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that

$\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$

i have tried with proof by induction, but it is very difficult to use this technique.

I should be very glad to see any approach, that can crack this nut.
 
Physics news on Phys.org
lfdahl said:
Prove, that

$\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$

i have tried with proof by induction, but it is very difficult to use this technique.

I should be very glad to see any approach, that can crack this nut.
This looks like a difficult problem. The only help I could find online is a paper Alternating sums of the reciprocals of binomial coefficients. You might find that helpful if you can wade your way through the dense notation.

It is fascinating to see how the formula $\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$ works for small values of $n$. For example, when $n=4$ the left side is $\frac18 - \frac2{28} + \frac3{56} - \frac4{70} + \frac5{56} - \frac6{28} + \frac78$, which magically simplifies to $\frac45.$ Notice that if you pair together the terms from each end of the sum that have the same denominator, their sum has the constant numerator $2n$ (except that the middle term stands on its own, and its numerator is $n$). But that does not seem to make the problem any simpler.
 
sorry about my post, absolute nonsense mate
 
Fermat said:
sorry about my post, absolute nonsense mate
No problem at all! ;)

- - - Updated - - -

Opalg said:
This looks like a difficult problem. The only help I could find online is a paper Alternating sums of the reciprocals of binomial coefficients. You might find that helpful if you can wade your way through the dense notation.

It is fascinating to see how the formula $\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$ works for small values of $n$. For example, when $n=4$ the left side is $\frac18 - \frac2{28} + \frac3{56} - \frac4{70} + \frac5{56} - \frac6{28} + \frac78$, which magically simplifies to $\frac45.$ Notice that if you pair together the terms from each end of the sum that have the same denominator, their sum has the constant numerator $2n$ (except that the middle term stands on its own, and its numerator is $n$). But that does not seem to make the problem any simpler.

Thanks a lot, Opalg, for your thorough considerations and numerical observations. I did observe my self, that pairing the terms from each end of the sum results in a common denominator ($2n$), but I was not able to proceed and get any closer to a final result ...:(
Well, anyway, from your considerations its a "comfort" to know, that the problem in fact is difficult, and that I didn´t overlook any obvious approach. Thankyou once again!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K