MHB Prove cos (π/100) is irrational

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cos Irrational
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cos \dfrac{\pi}{100}$ is irrational.
 
Mathematics news on Phys.org
Here is a really cheap proof, probably not what you're looking for, but something quick before I resume my homework :p

To prove that it is irrational, I will show that $\cos \dfrac{\pi}{100}$ can be expressed as a sum of two addends, one of which is irrational. It can be proven that if an addend is irrational, then the sum is also irrational. I will use the identity $\cos\left({A-B}\right)=2\cos\left({A}\right)\cos\left({B}\right)+(-\cos\left({A+B}\right))$.
Solving the two equations $A-B=\frac{\pi}{100}$ and $A+B=\frac{\pi}{4}$, then:$$\cos\left({\frac{\pi}{100}}\right)=\cos\left({\frac{13\pi}{100}-\frac{3\pi}{25}}\right)=2\cos\left({\frac{13\pi}{100}}\right)\cos\left({\frac{3\pi}{25}}\right)+(-\cos\left({\frac{\pi}{4}}\right))$$

Since $\cos\left({\frac{\pi}{4}}\right)$ is irrational (also can be proven), $\cos \dfrac{\pi}{100}$ is too.
 
Last edited:
Rido12 said:
Here is a really cheap proof, probably not what you're looking for, but something quick before I resume my homework :p

To prove that it is irrational, I will show that $\cos \dfrac{\pi}{100}$ can be expressed as a sum of two addends, one of which is irrational. It can be proven that if an addend is irrational, then the sum is also irrational. I will use the identity $\cos\left({A-B}\right)=2\cos\left({A}\right)\cos\left({B}\right)+(-\cos\left({A+B}\right))$.
Solving the two equations $A-B=\frac{\pi}{100}$ and $A+B=\frac{\pi}{4}$, then:$$\cos\left({\frac{\pi}{100}}\right)=\cos\left({\frac{13\pi}{100}-\frac{3\pi}{25}}\right)=2\cos\left({\frac{13\pi}{100}}\right)\cos\left({\frac{3\pi}{25}}\right)+(-\cos\left({\frac{\pi}{4}}\right))$$

Since $\cos\left({\frac{\pi}{4}}\right)$ is irrational (also can be proven), $\cos \dfrac{\pi}{100}$ is too.

This is exactly the elegant proof that I am looking for! Well done, Rido12, and thanks for participating! :cool:
 
Rido12 said:
Here is a really cheap proof, probably not what you're looking for, but something quick before I resume my homework :p

To prove that it is irrational, I will show that $\cos \dfrac{\pi}{100}$ can be expressed as a sum of two addends, one of which is irrational. It can be proven that if an addend is irrational, then the sum is also irrational. I will use the identity $\cos\left({A-B}\right)=2\cos\left({A}\right)\cos\left({B}\right)+(-\cos\left({A+B}\right))$.
Solving the two equations $A-B=\frac{\pi}{100}$ and $A+B=\frac{\pi}{4}$, then:$$\cos\left({\frac{\pi}{100}}\right)=\cos\left({\frac{13\pi}{100}-\frac{3\pi}{25}}\right)=2\cos\left({\frac{13\pi}{100}}\right)\cos\left({\frac{3\pi}{25}}\right)+(-\cos\left({\frac{\pi}{4}}\right))$$

Since $\cos\left({\frac{\pi}{4}}\right)$ is irrational (also can be proven), $\cos \dfrac{\pi}{100}$ is too.
I cannot agree on this.

We know that $\cos\left({\frac{\pi}{4}}\right)$ is irrational but we do not know

$2\cos\left({\frac{13\pi}{100}}\right)\cos\left({\frac{3\pi}{25}}\right)$

may be this is irrational and the irrational part cancells the irrational part of $\cos\left({\frac{\pi}{4}}\right)$

we need to prove that above is not true
 
Here I provide solution
as $\cos 2x =2\cos^2x-1$

so if
$\cos\, x$ is rational then $\cos 2x$ is rational

now

$\cos (n+1) x + \cos(n-1)x =2\cos\,nx\cos \, x$

hence
$\cos (n+1) x =2\cos\,nx\cos \ x- \cos(n-1)x ..\cdots(1)$

from (1) if $\cos\,x$ , $\cos\,nx$ , $\cos(n-1)x$ are rational then $\cos (n+1) x$ is rational

we have shown that if $\cos\,x$ is rational then
$\cos\,2x$ is rational and from (1) using n = 2 we can show that $\cos\,3x$ is rational so on
$\cos\,nx$ is rational for all n

now

$x=\dfrac{\pi}{100}$
letting n= 25

we get $\cos\dfrac{\pi}{4}$ is rational which is a contradiction as $\cos\dfrac{\pi}{4}$ being $\dfrac{1}{\sqrt{2}}$ is not

so $\cos\dfrac{\pi}{100}$ is irrational
 
I'm disappointed in myself and I apologize to the community for my temporary lack of attention and I apologize too for making the inappropriate statement. :(

However, here is a solution of other that I want to share with MHB:

Let $a=\cos \left(\dfrac{\pi}{100}\right)$ and $b=\sin \left(\dfrac{\pi}{100}\right)$.

Then from the Pythagorean identity, we have

$a^2+b^2=1$

$b^2=1-a^2$

Using De Moivre's Theorem and the Binomial Theorem, we have

$$
\begin{align*}\cos \left(\dfrac{\pi}{4}\right)&=\text{Re}(a+ib)^{25}\\&=\text{Re}\sum_{k=0}^{25}{25 \choose k}i^kb^ka^{25-k}\\&=\sum_{m=0}^{12}{25 \choose 2m}(-1)^m(1-a^2)^ma^{25-2m}\\&\end{align*}$$

If $a$ were rational, then each term on the RHS would be rational as well, contradicting the fact that $\cos \left(\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}$ is irrational.

Therefore $\cos \left(\dfrac{\pi}{100}\right)$ is irrational.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
2K
Replies
4
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
28
Views
2K
Replies
2
Views
1K
Replies
7
Views
3K
Back
Top