MHB Prove Geometric Sequence with $(a,b,c)$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be non-zero real numbers such that $(ab+bc+ca)^3=abc(a+b+c)^3$. Prove that $a,\,b,\,c$ are terms of a geometric sequence.
 
Mathematics news on Phys.org
Consider the monic polynomial $P(x)=x^3+mx^2+nx+p$, with roots $a,\,b,\,c$. Then by Viete's relations we have

$a+b+c=-m\\ab+bc+ca=n\\abc=-p$

The given equality yields $n^3=m^3p$. Hence, if $m\ne 0$, the equation $P(x)=0$ can be written as

$x^3+mx^2+nx+\dfrac{n^3}{m^3}=0$

$m^3x^3+m^4x^2+nm^3x+n^3=0$

Factor the left-hand side,

$(mx+n)(m^2x^2-mnx+n^2)+m^3x(mx+n)=(mx+n)(m^2x^2+(m^3-mn)x+n^2)$

It follows that one of the roots of $P$ is $x_1=-\dfrac{n}{m}$ and the other two satisfy the condition $x_2x_3=\dfrac{n^2}{m^2}$. We obtained $x_1^2=x_2x_3$, thus the roots are terms of a geometric sequence.

If $m=0$ then $n=0$ but in this case, the polynomial $x^3+p$ cannot have three real roots.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
4
Views
1K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
3K
Back
Top