MHB Prove Geometric Sequence with $(a,b,c)$

Click For Summary
The equation $(ab+bc+ca)^3=abc(a+b+c)^3$ establishes a relationship between the products and sums of the numbers $a$, $b$, and $c$. By manipulating the given equation, one can derive conditions that imply the ratios of the numbers must be constant. This leads to the conclusion that $a$, $b$, and $c$ can be expressed in the form of a geometric sequence. The proof involves algebraic transformations and the application of symmetric sums. Ultimately, it is demonstrated that the condition holds true if and only if $a$, $b$, and $c$ are in geometric progression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be non-zero real numbers such that $(ab+bc+ca)^3=abc(a+b+c)^3$. Prove that $a,\,b,\,c$ are terms of a geometric sequence.
 
Mathematics news on Phys.org
Consider the monic polynomial $P(x)=x^3+mx^2+nx+p$, with roots $a,\,b,\,c$. Then by Viete's relations we have

$a+b+c=-m\\ab+bc+ca=n\\abc=-p$

The given equality yields $n^3=m^3p$. Hence, if $m\ne 0$, the equation $P(x)=0$ can be written as

$x^3+mx^2+nx+\dfrac{n^3}{m^3}=0$

$m^3x^3+m^4x^2+nm^3x+n^3=0$

Factor the left-hand side,

$(mx+n)(m^2x^2-mnx+n^2)+m^3x(mx+n)=(mx+n)(m^2x^2+(m^3-mn)x+n^2)$

It follows that one of the roots of $P$ is $x_1=-\dfrac{n}{m}$ and the other two satisfy the condition $x_2x_3=\dfrac{n^2}{m^2}$. We obtained $x_1^2=x_2x_3$, thus the roots are terms of a geometric sequence.

If $m=0$ then $n=0$ but in this case, the polynomial $x^3+p$ cannot have three real roots.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K