Oct 7, 2016 #1 Albert1 Messages 1,221 Reaction score 0 $given :\,\,$ $a,b,c\geq1$ $prove:$ $(1+a)(1+b)(1+c)\geq 2(1+a+b+c)$
Oct 7, 2016 #2 Euge Gold Member MHB POTW Director Messages 2,072 Reaction score 245 Here is my solution. Spoiler $$(1+a)(1+b)(1+c) = 1 + a + b + c + ab + bc + ca + abc $$ and since $a,b,c \ge 1$, then $ab + bc + ca \ge a + b + c $ and $abc \ge 1$; the result now follows.
Here is my solution. Spoiler $$(1+a)(1+b)(1+c) = 1 + a + b + c + ab + bc + ca + abc $$ and since $a,b,c \ge 1$, then $ab + bc + ca \ge a + b + c $ and $abc \ge 1$; the result now follows.