Prove Inequality: $m,n,k\in N$, $m>1,n>1$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)>98\times 3^m\times 5^n\times7^k$ is proven for natural numbers $m, n, k$ where $m > 1$ and $n > 1$. The proof utilizes properties of exponential growth and the specific values of the bases involved. Key steps include demonstrating the growth rates of the left-hand side compared to the right-hand side, confirming that the inequality holds true for all specified values of $m$, $n$, and $k$.

PREREQUISITES
  • Understanding of exponential functions and their growth rates
  • Familiarity with inequalities in number theory
  • Basic knowledge of natural numbers and their properties
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of exponential functions in depth
  • Explore advanced inequalities in number theory
  • Learn about mathematical induction as a proof technique
  • Investigate applications of inequalities in combinatorial mathematics
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in advanced mathematical proofs and inequalities.

Albert1
Messages
1,221
Reaction score
0
$m,n,k\in N$, and $m>1,n>1$
prove :
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)>98\times 3^m\times 5^n\times7^k$
 
Mathematics news on Phys.org
becauase m > 1and n > 1
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)$
= $3^m(3- \frac{1}{3^m})\times 5^n(5-\frac{1}{5^n})\times 7^k(7- \frac{1}{7^k})$
= $3^m\times 5^n \times 7^k (3- \frac{1}{3^m})(5-\frac{1}{5^n})(7- \frac{1}{7^k})$
$\ge \ 3^m\times 5^n \times 7^k (3- \frac{1}{3^2})(5-\frac{1}{5^2})(7- \frac{1}{7})$ putting minimum values of m,n,k
$\ge 98.25 \times 3^m\times 5^n \times 7^k$ (used a calculator)
$\gt 98 \times 3^m\times 5^n \times 7^k$
 
kaliprasad said:
becauase m > 1and n > 1
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)$
= $3^m(3- \frac{1}{3^m})\times 5^n(5-\frac{1}{5^n})\times 7^k(7- \frac{1}{7^k})$
= $3^m\times 5^n \times 7^k (3- \frac{1}{3^m})(5-\frac{1}{5^n})(7- \frac{1}{7^k})$
$\ge \ 3^m\times 5^n \times 7^k (3- \frac{1}{3^2})(5-\frac{1}{5^2})(7- \frac{1}{7})$ putting minimum values of m,n,k
$\ge 98.25 \times 3^m\times 5^n \times 7^k$ (used a calculator)
$\gt 98 \times 3^m\times 5^n \times 7^k$
nice solution!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
985
  • · Replies 2 ·
Replies
2
Views
2K