MHB Prove Inequality: $m,n,k\in N$, $m>1,n>1$

Click For Summary
The discussion focuses on proving the inequality involving natural numbers m, n, and k, where m and n are greater than 1. The inequality to prove is that the product of the terms (3^(m+1)-1), (5^(n+1)-1), and (7^(k+1)-1) exceeds 98 times the product of 3^m, 5^n, and 7^k. Participants explore various mathematical approaches and techniques to establish this inequality. The conversation emphasizes the need for a solid mathematical foundation and logical reasoning in the proof. Ultimately, the goal is to confirm the validity of the inequality under the given conditions.
Albert1
Messages
1,221
Reaction score
0
$m,n,k\in N$, and $m>1,n>1$
prove :
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)>98\times 3^m\times 5^n\times7^k$
 
Mathematics news on Phys.org
becauase m > 1and n > 1
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)$
= $3^m(3- \frac{1}{3^m})\times 5^n(5-\frac{1}{5^n})\times 7^k(7- \frac{1}{7^k})$
= $3^m\times 5^n \times 7^k (3- \frac{1}{3^m})(5-\frac{1}{5^n})(7- \frac{1}{7^k})$
$\ge \ 3^m\times 5^n \times 7^k (3- \frac{1}{3^2})(5-\frac{1}{5^2})(7- \frac{1}{7})$ putting minimum values of m,n,k
$\ge 98.25 \times 3^m\times 5^n \times 7^k$ (used a calculator)
$\gt 98 \times 3^m\times 5^n \times 7^k$
 
kaliprasad said:
becauase m > 1and n > 1
$(3^{m+1}-1)\times (5^{n+1}-1)\times(7^{k+1}-1)$
= $3^m(3- \frac{1}{3^m})\times 5^n(5-\frac{1}{5^n})\times 7^k(7- \frac{1}{7^k})$
= $3^m\times 5^n \times 7^k (3- \frac{1}{3^m})(5-\frac{1}{5^n})(7- \frac{1}{7^k})$
$\ge \ 3^m\times 5^n \times 7^k (3- \frac{1}{3^2})(5-\frac{1}{5^2})(7- \frac{1}{7})$ putting minimum values of m,n,k
$\ge 98.25 \times 3^m\times 5^n \times 7^k$ (used a calculator)
$\gt 98 \times 3^m\times 5^n \times 7^k$
nice solution!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
5
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K