MHB Prove Inequality of $x$ and $y$ with $x^3-y^3=2$ and $x^5-y^5\ge 4$

Click For Summary
The discussion revolves around proving that for real numbers \( x \) and \( y \) satisfying \( x^3 - y^3 = 2 \) and \( x^5 - y^5 \geq 4 \), it follows that \( x^2 + y^2 > 2 \). Participants emphasize the relationship between the given equations and the implications for the values of \( x \) and \( y \). The proof hinges on algebraic manipulations and inequalities derived from the conditions provided. The conclusion drawn is that the conditions indeed lead to the assertion that \( x^2 + y^2 \) must exceed 2. This establishes a clear link between the cubic and quintic differences and the required inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.
 
Mathematics news on Phys.org
anemone said:
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.
from 1st relation $x > y$ ( if we need to prove refer to 2nd box)
$(x^3-y^3)(x^2+y^2) = x^5 - y^5 + x^3y^2 - x^2y^3 = x^5-y^5 + x^2y^2(x-y) > x^5-y^5$
hence
$(x^2+y^2) > \frac{x^5-y^5}{x^3-y^3} > \frac{4}{2} \,or\,2 $ as $(x^5-y^5),(x^3-y^3)$ both positive

$(a^3-b^3) = (a-b)(a^2+b^2 + ab)$

$a^2+b^2 + ab $ if both same sign then $(a-b)^2+ 3ab$ positive

if opposite signs

then a$a^2+b^2 + ab = (a+b)^2 -ab$ both positive and sum positive
 
Very well done, kaliprasad!(Cool)
 
anemone said:
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.

Note that $x>y$. Proof: $x^3-y^3=(x-y)(x^2+xy+y^2)$. as $x^2+xy+y^2$ is positive and $x^3-y^3$ is positive, it follows that $x>y$.

$$x^5-y^5\ge2(x^3-y^3)$$
$$(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)\ge2(x-y)(x^2+xy+y^2)$$
$$x^4+x^3y+x^2y^2+xy^3+y^4-2(x^2+y^2)-2xy\ge0$$
$$(x^2+y^2)^2-x^2y^2+x^3y+xy^3-2(x^2+y^2)-2xy\ge0$$
$$(x^2+y^2-2)(x^2+y^2)+xy(x^2+y^2-2)-x^2y^2\ge0$$
$$(x^2+y^2-2)(x^2+y^2+xy)-x^2y^2\ge0\quad(1)$$

It follows from $(1)$ that $x^2+y^2>2$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K