Prove Inequality of $x$ and $y$ with $x^3-y^3=2$ and $x^5-y^5\ge 4$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality \(x^2 + y^2 > 2\) given the conditions \(x^3 - y^3 = 2\) and \(x^5 - y^5 \ge 4\). The scope includes mathematical reasoning and proof techniques related to inequalities involving real numbers.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Multiple participants reiterate the problem statement, emphasizing the need to prove \(x^2 + y^2 > 2\) under the given conditions.
  • One participant expresses approval of another's contribution, indicating a positive reception to the discussion but not adding new arguments.

Areas of Agreement / Disagreement

Participants appear to agree on the problem statement and the goal of proving the inequality, but no substantive arguments or proofs have been presented to resolve the question.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that might be necessary for a complete proof. The nature of the inequality and its dependence on the specific values of \(x\) and \(y\) remain unspecified.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.
 
Mathematics news on Phys.org
anemone said:
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.
from 1st relation $x > y$ ( if we need to prove refer to 2nd box)
$(x^3-y^3)(x^2+y^2) = x^5 - y^5 + x^3y^2 - x^2y^3 = x^5-y^5 + x^2y^2(x-y) > x^5-y^5$
hence
$(x^2+y^2) > \frac{x^5-y^5}{x^3-y^3} > \frac{4}{2} \,or\,2 $ as $(x^5-y^5),(x^3-y^3)$ both positive

$(a^3-b^3) = (a-b)(a^2+b^2 + ab)$

$a^2+b^2 + ab $ if both same sign then $(a-b)^2+ 3ab$ positive

if opposite signs

then a$a^2+b^2 + ab = (a+b)^2 -ab$ both positive and sum positive
 
Very well done, kaliprasad!(Cool)
 
anemone said:
$x$ and $y$ are two real numbers such that $x^3-y^3=2$ and $x^5-y^5\ge 4$.

Prove that $x^2+y^2\gt 2$.

Note that $x>y$. Proof: $x^3-y^3=(x-y)(x^2+xy+y^2)$. as $x^2+xy+y^2$ is positive and $x^3-y^3$ is positive, it follows that $x>y$.

$$x^5-y^5\ge2(x^3-y^3)$$
$$(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)\ge2(x-y)(x^2+xy+y^2)$$
$$x^4+x^3y+x^2y^2+xy^3+y^4-2(x^2+y^2)-2xy\ge0$$
$$(x^2+y^2)^2-x^2y^2+x^3y+xy^3-2(x^2+y^2)-2xy\ge0$$
$$(x^2+y^2-2)(x^2+y^2)+xy(x^2+y^2-2)-x^2y^2\ge0$$
$$(x^2+y^2-2)(x^2+y^2+xy)-x^2y^2\ge0\quad(1)$$

It follows from $(1)$ that $x^2+y^2>2$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K