MHB Prove Inequality: $x^4,y^4,z^4 \geq 48(y-1)^2(z-1)^2(x-1)^2$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality \( \frac{x^4}{(y-1)^2} + \frac{y^4}{(z-1)^2} + \frac{z^4}{(x-1)^2} \geq 48 \) under the conditions \( x > 1, y > 1, z > 1 \). The proof involves manipulating the terms to show that each fraction is greater than or equal to a certain expression involving the differences between the variables. Specifically, inequalities are established for each term, leading to a combination that satisfies the original inequality. The final conclusion is reached by summing these inequalities. This demonstrates the validity of the proposed inequality under the given conditions.
Albert1
Messages
1,221
Reaction score
0
x>1,y>1 and z>1

prove :$\dfrac {x^4}{(y-1)^2}+\dfrac {y^4}{(z-1)^2}+\dfrac

{z^4}{(x-1)^2}\geq 48$
 
Mathematics news on Phys.org
Re: prove another inequality

Albert said:
x>1,y>1 and z>1

prove :$\dfrac {x^4}{(y-1)^2}+\dfrac {y^4}{(z-1)^2}+\dfrac

{z^4}{(x-1)^2}\geq 48$

If any of the coordinates is close to either $1$ or $\infty$, the LHS approaches $\infty$.
Therefore there must be a minimum where all coordinates are between $1$ and $\infty$.

Due to the cyclic symmetry, the optimum must have equal coordinates, meaning $x=y=z$.
Substituting gives us an LHS of
$$\frac {3x^4}{(x-1)^3}$$
Taking the derivative, setting it to zero, and solving, yields $x=y=z=2$.
The corresponding minimum is 48.$\qquad \blacksquare$
 
Re: prove another inequality

$\,\,\dfrac {x^4}{(y-1)^2}+16(y-1)+16(y-1)+16\geq 4\sqrt[4]{16^3x^4}=32x$

$\therefore \,\,\dfrac {x^4}{(y-1)^2}\,\, \geq 32(x-y)+16---(1)$$\therefore \,\,\dfrac {y^4}{(z-1)^2}\,\, \geq 32(y-z)+16---(2)$

$\therefore \,\,\dfrac {z^4}{(x-1)^2}\,\, \geq 32(z-x)+16---(3)$

(1)+(2)+(3) and the proof is accomplished
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K