MHB Prove Inequality: $x^4,y^4,z^4 \geq 48(y-1)^2(z-1)^2(x-1)^2$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality \( \frac{x^4}{(y-1)^2} + \frac{y^4}{(z-1)^2} + \frac{z^4}{(x-1)^2} \geq 48 \) under the conditions \( x > 1, y > 1, z > 1 \). The proof involves manipulating the terms to show that each fraction is greater than or equal to a certain expression involving the differences between the variables. Specifically, inequalities are established for each term, leading to a combination that satisfies the original inequality. The final conclusion is reached by summing these inequalities. This demonstrates the validity of the proposed inequality under the given conditions.
Albert1
Messages
1,221
Reaction score
0
x>1,y>1 and z>1

prove :$\dfrac {x^4}{(y-1)^2}+\dfrac {y^4}{(z-1)^2}+\dfrac

{z^4}{(x-1)^2}\geq 48$
 
Mathematics news on Phys.org
Re: prove another inequality

Albert said:
x>1,y>1 and z>1

prove :$\dfrac {x^4}{(y-1)^2}+\dfrac {y^4}{(z-1)^2}+\dfrac

{z^4}{(x-1)^2}\geq 48$

If any of the coordinates is close to either $1$ or $\infty$, the LHS approaches $\infty$.
Therefore there must be a minimum where all coordinates are between $1$ and $\infty$.

Due to the cyclic symmetry, the optimum must have equal coordinates, meaning $x=y=z$.
Substituting gives us an LHS of
$$\frac {3x^4}{(x-1)^3}$$
Taking the derivative, setting it to zero, and solving, yields $x=y=z=2$.
The corresponding minimum is 48.$\qquad \blacksquare$
 
Re: prove another inequality

$\,\,\dfrac {x^4}{(y-1)^2}+16(y-1)+16(y-1)+16\geq 4\sqrt[4]{16^3x^4}=32x$

$\therefore \,\,\dfrac {x^4}{(y-1)^2}\,\, \geq 32(x-y)+16---(1)$$\therefore \,\,\dfrac {y^4}{(z-1)^2}\,\, \geq 32(y-z)+16---(2)$

$\therefore \,\,\dfrac {z^4}{(x-1)^2}\,\, \geq 32(z-x)+16---(3)$

(1)+(2)+(3) and the proof is accomplished
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K