Prove $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ with $s+t+u+v=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary

Discussion Overview

The discussion revolves around proving the equation $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ under the condition that $s+t+u+v=0$. The scope includes mathematical reasoning and exploration of algebraic identities.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Multiple participants present the same equation to be proven, indicating a focus on the algebraic identity.

Areas of Agreement / Disagreement

There is no indication of disagreement or differing views, as all posts reiterate the same problem statement without additional commentary or exploration.

Contextual Notes

The posts do not provide any assumptions, definitions, or mathematical steps that could clarify the proof process or highlight limitations.

Who May Find This Useful

Readers interested in algebraic identities, mathematical proofs, or those studying properties of symmetric sums may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.
 
Mathematics news on Phys.org
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

from the above
$(s+t) = -(u+v)\cdots(1)$
also
$s+t+ u = -v \cdots(2)$
cube both sides of (1) to get
$(s+t)^3 = - (u+v)^3$
or $s^3+t^3 + 3st(s+t) = - (u^3+v^3 + 3uv(u+v)$
or $s^3+t^3+ u^3+v^3 = -(3st(s+t) + 3uv(u+v))= -3(st(s+t) - uv(s+t))$ using (1)
or $s^3+t^3+u^3+v^3 = -3(st-uv)(s+t)\cdots(3)$
by symmetry we can show that
$s^3+t^3+u^3+v^3 = -3(su-tv)(s+u)\cdots(4)$
by multiplying (3) with (4) we get
$(s^3+t^3+u^3+v^3)^2 = 9(st-uv)(su-tv)((s+t)(s+u))$
= $9(st-uv)(su-tv)(s^2+ st + su + ut)$
= $9(st-uv)(su-tv)(s(s+t+u) + ut)$
= $9(st-uv)(su-tv)(-vs + ut)$ using (2)
= $9(st-uv)(ut-sv)(su-tv)$

Proved
 
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

$$\text{L.H.S:}$$

$$(s^3+t^3+u^3+v^3)^2$$

$$=[(s+t)(s^2-st+t^2)+(u+v)(u^2-uv+v^2)]^2$$

$$=[(s+t)(s^2-st+t^2)-(s+t)(u^2-uv+v^2)]^2$$

$$=(s+t)^2(s^2-u^2+t^2-v^2-st+uv)^2$$

$$=(s+t)^2[(s-u)(s+u)+(t-v)(t+v)-st+uv]^2$$

$$=(s+t)^2[-(s-u)(t+v)-(t-v)(s+u)-st+uv]^2$$

$$=(s+t)^2(-st-sv+tu+uv-st-tu+sv+uv-st+uv)^2$$

$$=(s+t)^2(-3st+3uv)^2$$

$$=9(st-uv)^2(s+t)^2$$

$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$

$$\text{R.H.S:}$$

$$9(st-uv)(tu-sv)(su-tv)$$

$$(tu-sv)(su-tv)=stu^2-t^2uv-s^2uv+stv^2$$

(as required).
 
Thanks to kaliprasad and greg1313 for participating in this challenge! :)
 
greg1313 said:
$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$
smart reduction I struggled here before I changed my method
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K