Prove $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ with $s+t+u+v=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
SUMMARY

The equation $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ holds true under the condition that $s+t+u+v=0$. This identity can be derived using algebraic manipulation and properties of symmetric sums. The discussion emphasizes the importance of understanding the relationships between the variables involved in the proof, specifically focusing on the symmetric nature of the expressions.

PREREQUISITES
  • Understanding of symmetric sums in algebra
  • Familiarity with polynomial identities
  • Knowledge of real number properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study symmetric polynomials and their applications
  • Explore algebraic identities involving cubes
  • Learn about the properties of real numbers in polynomial equations
  • Investigate advanced algebraic proofs and techniques
USEFUL FOR

Mathematicians, algebra students, and anyone interested in polynomial identities and symmetric functions will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.
 
Mathematics news on Phys.org
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

from the above
$(s+t) = -(u+v)\cdots(1)$
also
$s+t+ u = -v \cdots(2)$
cube both sides of (1) to get
$(s+t)^3 = - (u+v)^3$
or $s^3+t^3 + 3st(s+t) = - (u^3+v^3 + 3uv(u+v)$
or $s^3+t^3+ u^3+v^3 = -(3st(s+t) + 3uv(u+v))= -3(st(s+t) - uv(s+t))$ using (1)
or $s^3+t^3+u^3+v^3 = -3(st-uv)(s+t)\cdots(3)$
by symmetry we can show that
$s^3+t^3+u^3+v^3 = -3(su-tv)(s+u)\cdots(4)$
by multiplying (3) with (4) we get
$(s^3+t^3+u^3+v^3)^2 = 9(st-uv)(su-tv)((s+t)(s+u))$
= $9(st-uv)(su-tv)(s^2+ st + su + ut)$
= $9(st-uv)(su-tv)(s(s+t+u) + ut)$
= $9(st-uv)(su-tv)(-vs + ut)$ using (2)
= $9(st-uv)(ut-sv)(su-tv)$

Proved
 
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

$$\text{L.H.S:}$$

$$(s^3+t^3+u^3+v^3)^2$$

$$=[(s+t)(s^2-st+t^2)+(u+v)(u^2-uv+v^2)]^2$$

$$=[(s+t)(s^2-st+t^2)-(s+t)(u^2-uv+v^2)]^2$$

$$=(s+t)^2(s^2-u^2+t^2-v^2-st+uv)^2$$

$$=(s+t)^2[(s-u)(s+u)+(t-v)(t+v)-st+uv]^2$$

$$=(s+t)^2[-(s-u)(t+v)-(t-v)(s+u)-st+uv]^2$$

$$=(s+t)^2(-st-sv+tu+uv-st-tu+sv+uv-st+uv)^2$$

$$=(s+t)^2(-3st+3uv)^2$$

$$=9(st-uv)^2(s+t)^2$$

$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$

$$\text{R.H.S:}$$

$$9(st-uv)(tu-sv)(su-tv)$$

$$(tu-sv)(su-tv)=stu^2-t^2uv-s^2uv+stv^2$$

(as required).
 
Thanks to kaliprasad and greg1313 for participating in this challenge! :)
 
greg1313 said:
$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$
smart reduction I struggled here before I changed my method
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K