MHB Prove: Sum of Cubed Roots of Trigonometric Expressions Equals Square Root of 9/2

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equation involving the sum of cubed roots of trigonometric expressions: $\sqrt[3]{\sqrt{3}\cos10^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos110^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos130^{\circ}+1}=\sqrt[3]{\dfrac{9}{2}}$. Participants are encouraged to engage with the Problem of the Week (POTW) despite previous challenges, as last week's problem received no responses. The thread emphasizes the importance of following guidelines for submitting solutions. Members are invited to contribute their attempts to solve the equation. The discussion highlights a collaborative effort to tackle complex mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove $\sqrt[3]{\sqrt{3}\cos10^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos110^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos130^{\circ}+1}=\sqrt[3]{\dfrac{9}{2}}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi to all MHB members!

Despite of the fact that last week's High School's POTW is more difficult than usual, I am going to give members another week to attempt at a solution!(Smile)
 
No one answered last two week's POTW.(Sadface)

Solution from other:
Let $X=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}$ where

$\begin{align*}a&=\sqrt{3}\cos 10^{\circ}+1\\&=2\cos 30^{\circ}\cos 10^{\circ}+1\\&=\cos 40^{\circ}+\cos 20^{\circ}+1\\&=2\cos^{2}20^{\circ}+\cos 20^{\circ}\\&=2\cos 20^{\circ}\left(\cos 20^{\circ}+\frac{1}{2}\right)\\&=2\cos 20^{\circ}(\cos 20^{\circ}+\cos 60^{\circ})\\&=2\cos 20^{\circ}2\cos 40^{\circ}\cos 20^{\circ}\\&=4\cos^2 20^{\circ}\cos 40^{\circ}\end{align*}$

$\begin{align*}b&=\sqrt{3}\cos 110^{\circ}+1\\&=2\sin 60^{\circ}\cos 110^{\circ}+1\\&=\sin 170^{\circ}-\sin 50^{\circ}+1\\&=\sin 10^{\circ}-\sin 50^{\circ}+\sin 90^{\circ}\\&=2\sin 50^{\circ}\cos 40^{\circ}-\sin 50^{\circ}\\&=2\sin 50^{\circ}\left(\cos 40^{\circ}-\frac{1}{2}\right)\\&=2\sin 50^{\circ}2\sin 50^{\circ}\sin 10^{\circ}\\&=4\sin^2 50^{\circ}\sin 10^{\circ}\\&=4\cos^2 40^{\circ}\sin 10^{\circ}\end{align*}$

$\begin{align*}c&=\sqrt{3}\cos 130^{\circ}+1\\&=2\cos 30^{\circ}\cos 130^{\circ}+1\\&=\cos 160^{\circ}+\cos 100^{\circ}+1\\&=-\cos 20^{\circ}-\sin 10^{\circ}+1\\&=2\sin^2 10^{\circ}-\sin 10^{\circ}\\&=2\sin 10^{\circ}\left(\sin 10^{\circ}-\frac{1}{2}\right)\\&=2\sin 10^{\circ}(\cos 80^{\circ}-\cos 60^{\circ})\\&=2\sin 10^{\circ}(-2\sin 70^{\circ}\sin 10^{\circ})\\&=-4\sin^{2}10^{\circ}\cos 20^{\circ}\end{align*}$$\begin{align*}X^{3}&=(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c})^{3}\\&=a+b+c+3(\sqrt[3]{a^{2}b}+\sqrt[3]{a^{2}c}+\sqrt[3]{b^{2}a}+\sqrt[3]{b^{2}c}+2\sqrt[3]{abc}+\sqrt[3]{c^{2}a}+\sqrt[3]{c^{2}b})\end{align*}$

$\begin{align*}a+b+c&=\sqrt{3}\cos 10^{\circ}+1+\sqrt{3}\cos 110^{\circ}+1+\sqrt{3}\cos 130^{\circ}+1\\&=\sqrt{3}(\cos 10^{\circ}+\cos 110^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(2\cos 60^{\circ}\cos 50^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(\cos 50^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(2\cos 90^{\circ}\cos 40^{\circ})+3\\&=\sqrt{3} \cdot 0 + 3\\&=3\end{align*}$

$\begin{align*}\sqrt[3]{a^{2}b}&=\sqrt[3]{4^3\cos^{4}20^{\circ}\cos^{4}40^{\circ} \cdot \sin 10^{\circ}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\cos 40^{\circ}\cos 20^{\circ}\sin 10^{\circ}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\dfrac{\cos 2(30^{\circ})}{4}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\frac{1}{8}}\\&=2\cos 20^{\circ}\cos 40^{\circ}\end{align*}$.

$\sqrt[3]{a^{2}c}=-\cos 20^{\circ}$.
$\sqrt[3]{b^{2}a}=\cos 40^{\circ}$.
$\sqrt[3]{b^{2}c}=-2\cos 40^{\circ}\cos 80^{\circ}=-2\cos 40^{\circ}\sin 10^{\circ}$.

$2\sqrt[3]{abc}=-8\cos 20^{\circ}\cos 40^{\circ}\sin 10^{\circ}=\dfrac{-8}{8}=-1$.
$\sqrt[3]{c^{2}a}=2\sin 10^{\circ}\cos 20^{\circ}$.
$\sqrt[3]{c^{2}b}=\sin 10^{\circ}$.

$\begin{align*}X^{3}&=3+3(2\cos 20^{\circ}\cos 40^{\circ}-\cos 20^{\circ}+\cos 40^{\circ}-2\cos 40^{\circ}\sin 10^{\circ}-1+2\sin 10^{\circ}\cos 20^{\circ}+\sin 10^{\circ})\\&=3+3(2(\cos 20^{\circ}\cos 40^{\circ}-\cos 40^{\circ}\sin 10^{\circ}+\sin 10^{\circ}\cos 20^{\circ})-\cos 20^{\circ}+\cos 40^{\circ}-1+\sin 10^{\circ})\\&=3+3(2\left(\dfrac{1}{2}(\cos 60^{\circ}+\cos 20^{\circ})-\dfrac{1}{2}(\sin 50^{\circ}-\sin 30^{\circ})+\dfrac{1}{2}(\sin 30^{\circ}-\sin 10^{\circ})\right)-\sin 10^{\circ}-1+\sin 10^{\circ})\\&=3+3((\dfrac{1}{2}+\cos 20^{\circ}-\sin 50^{\circ}+\dfrac{1}{2}+\dfrac{1}{2}-\sin 10^{\circ})-1)\\&=3+3((\dfrac{3}{2}+\cos 20^{\circ}-(2\sin 30^{\circ}\cos 20^{\circ})-1)\\&=3+3 \cdot \frac{1}{2}\\&=\frac{9}{2}\end{align*}$This implies $X=\sqrt[3]{\frac{9}{2}}$ i.e. $\sqrt[3]{\sqrt{3}\cos10^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos110^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos130^{\circ}+1}=\sqrt[3]{\frac{9}{2}}$.
 
Back
Top