Prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof demonstrates that for any prime number \( p > 3 \), \( 13 \) divides \( 10^{2p} - 10^{p} + 1 \). The proof is divided into two cases based on the form of \( p \): \( 6k + 1 \) and \( 6k + 5 \). In both cases, modular arithmetic is employed to show that \( 10^{2p} - 10^{p} + 1 \equiv 0 \pmod{13} \). Thus, it is established that \( 13 \mid (10^{2p} - 10^{p} + 1) \).

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with prime numbers and their properties
  • Knowledge of algebraic manipulation involving exponents
  • Basic comprehension of congruences
NEXT STEPS
  • Study modular arithmetic in depth, focusing on applications in number theory
  • Explore the properties of prime numbers, particularly in relation to divisibility
  • Learn about algebraic identities and their proofs
  • Investigate advanced topics in number theory, such as Fermat's Little Theorem
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in proofs involving divisibility and modular arithmetic.

Math100
Messages
817
Reaction score
230
Homework Statement
For any prime ## p>3 ##, prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##.
Relevant Equations
None.
Proof:

Let ## p>3 ## be any prime number.
Then ## p>3 ## is either of the form ## 6k+1 ## or ## 6k+5 ## for some ## k\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## p=6k+1 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+2}-10^{6k+1}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+2}-(-3)^{6k+1}+1]\pmod {13}\\
&\equiv [9((-3)^{3})^{4k}\cdot 3((-3)^{3})^{2k}+1]\pmod {13}\\
&\equiv [9(-1)^{4k}\cdot 3(-1)^{2k}+1]\pmod {13}\\
&\equiv (9+3+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Case #2: Suppose ## p=6k+5 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+10}-10^{6k+5}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+10}-(-3)^{6k+5}+1]\pmod {13}\\
&\equiv [-3((-3)^{3})^{4k+3}\cdot (-9)((-3)^{3})^{2k+1}+1]\pmod {13}\\
&\equiv [-3(-1)^{4k+3}\cdot (-9)(-1)^{2k+1}+1]\pmod {13}\\
&\equiv (3+9+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Therefore, ## 13 ## divides ## 10^{2p}-10^{p}+1 ## for any prime ## p>3 ##.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: For any prime ## p>3 ##, prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##.
Relevant Equations:: None.

Proof:

Let ## p>3 ## be any prime number.
Then ## p>3 ## is either of the form ## 6k+1 ## or ## 6k+5 ## for some ## k\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## p=6k+1 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+2}-10^{6k+1}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+2}-(-3)^{6k+1}+1]\pmod {13}\\
&\equiv [9((-3)^{3})^{4k}\cdot 3((-3)^{3})^{2k}+1]\pmod {13}\\
&\equiv [9(-1)^{4k}\cdot 3(-1)^{2k}+1]\pmod {13}\\
&\equiv (9+3+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Correct, except that your \cdot should be +.
Math100 said:
Case #2: Suppose ## p=6k+5 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+10}-10^{6k+5}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+10}-(-3)^{6k+5}+1]\pmod {13}\\
&\equiv [-3((-3)^{3})^{4k+3}\cdot (-9)((-3)^{3})^{2k+1}+1]\pmod {13}\\
&\equiv [-3(-1)^{4k+3}\cdot (-9)(-1)^{2k+1}+1]\pmod {13}\\
&\equiv (3+9+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Same as above, \cdot should be +, but otherwise correct.
Math100 said:
Therefore, ## 13 ## divides ## 10^{2p}-10^{p}+1 ## for any prime ## p>3 ##.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K