Prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
For any prime number p greater than 3, it is proven that 13 divides the expression 10^(2p) - 10^p + 1. The proof is divided into two cases based on the form of p: either 6k+1 or 6k+5. In both cases, modular arithmetic is used to show that the expression is congruent to 0 modulo 13. The calculations confirm that in both scenarios, the result holds true. Thus, the conclusion is that 13 indeed divides 10^(2p) - 10^p + 1 for all primes p greater than 3.
Math100
Messages
813
Reaction score
229
Homework Statement
For any prime ## p>3 ##, prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##.
Relevant Equations
None.
Proof:

Let ## p>3 ## be any prime number.
Then ## p>3 ## is either of the form ## 6k+1 ## or ## 6k+5 ## for some ## k\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## p=6k+1 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+2}-10^{6k+1}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+2}-(-3)^{6k+1}+1]\pmod {13}\\
&\equiv [9((-3)^{3})^{4k}\cdot 3((-3)^{3})^{2k}+1]\pmod {13}\\
&\equiv [9(-1)^{4k}\cdot 3(-1)^{2k}+1]\pmod {13}\\
&\equiv (9+3+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Case #2: Suppose ## p=6k+5 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+10}-10^{6k+5}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+10}-(-3)^{6k+5}+1]\pmod {13}\\
&\equiv [-3((-3)^{3})^{4k+3}\cdot (-9)((-3)^{3})^{2k+1}+1]\pmod {13}\\
&\equiv [-3(-1)^{4k+3}\cdot (-9)(-1)^{2k+1}+1]\pmod {13}\\
&\equiv (3+9+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Therefore, ## 13 ## divides ## 10^{2p}-10^{p}+1 ## for any prime ## p>3 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: For any prime ## p>3 ##, prove that ## 13 ## divides ## 10^{2p}-10^{p}+1 ##.
Relevant Equations:: None.

Proof:

Let ## p>3 ## be any prime number.
Then ## p>3 ## is either of the form ## 6k+1 ## or ## 6k+5 ## for some ## k\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## p=6k+1 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+2}-10^{6k+1}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+2}-(-3)^{6k+1}+1]\pmod {13}\\
&\equiv [9((-3)^{3})^{4k}\cdot 3((-3)^{3})^{2k}+1]\pmod {13}\\
&\equiv [9(-1)^{4k}\cdot 3(-1)^{2k}+1]\pmod {13}\\
&\equiv (9+3+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Correct, except that your \cdot should be +.
Math100 said:
Case #2: Suppose ## p=6k+5 ## for some ## k\in\mathbb{Z} ##.
Then ## 10^{2p}-10^{p}+1=10^{12k+10}-10^{6k+5}+1 ##.
Observe that
\begin{align*}
&10^{2p}-10^{p}+1\equiv [(-3)^{12k+10}-(-3)^{6k+5}+1]\pmod {13}\\
&\equiv [-3((-3)^{3})^{4k+3}\cdot (-9)((-3)^{3})^{2k+1}+1]\pmod {13}\\
&\equiv [-3(-1)^{4k+3}\cdot (-9)(-1)^{2k+1}+1]\pmod {13}\\
&\equiv (3+9+1)\pmod {13}\\
&\equiv 0\pmod {13}.\\
\end{align*}
Thus, ## 13\mid (10^{2p}-10^{p}+1) ##.
Same as above, \cdot should be +, but otherwise correct.
Math100 said:
Therefore, ## 13 ## divides ## 10^{2p}-10^{p}+1 ## for any prime ## p>3 ##.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top