- #1
Math100
- 783
- 220
- Homework Statement
- Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
- Relevant Equations
- Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}