Prove that ## 4\mid \sigma_{1}(4k+3) ##

  • Thread starter Math100
  • Start date
In summary: And while we are at it: I think you mean ##\forall## when you write ##\forall##. I am not sure if you are supposed to explain why ##p_1=3## is the right choice. I guess it is clear to you that the product of the ##p_i^{k_i}## is not divisible by ##4## so that at least one of the factors is not divisible by ##4##. This is what I used to set ##p_1## to a factor that is not divisible by ##4. If it were divisible by ##4## then the product would be divisible by ##4##. But maybe this is too much reading between the lines. I hope you are fine with
  • #1
734
186
Homework Statement
Prove that ## 4\mid \sigma_{1}(4k+3) ## for each positive integer ## k ##.
Relevant Equations
None.
Proof:

Suppose ## a=4k+3 ## for some ## k\in\mathbb{Z^{+}} ##.
Then ## a=p_{1}^{k_{1}}p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}}\implies 4k+3=p_{1}^{k_{1}}p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ##.
Observe that ## \sigma_{1}(4k+3)=\sigma (p_{1}^{k_{1}})\sigma (p_{2}^{k_{2}})\dotsb \sigma (p_{r}^{k_{r}} ##.
Thus
\begin{align*}
&\sigma_{1} (p_{i}^{k_{i}})=1+p_{i}+p_{i}^2+\dotsb +p_{i}^{k_{i}}\\
&\equiv (1+3+3^{2}+\dotsb +3^{k_{i}})\pmod {4}\\
&\equiv (1-1+1-1+\dotsb +1-1)\pmod {4}\\
&\equiv 0\pmod {4}.\\
\end{align*}
Therefore, ## 4\mid \sigma_{1}(4k+3) ## for each positive integer ## k ##.
 
Physics news on Phys.org
  • #2
I don't think this is correct.

We have
$$
\sigma_1(a)=\sigma_1(4k+3)=\sigma_1\left(\prod_{i=1}^r p_i^{k_i}\right)=\prod_{i=1}^r\dfrac{p_i^{k_i+1}-1}{p_i-1} =\prod_{i=1}^r \left(p_i^{k_i}+\ldots+p_i+1\right)
$$

If ##[a]_4## notes the equivalence class of an integer ##a \pmod{4}## then how do we know that ##\sigma_1([a]_4)=[\sigma_1(a)]_4.## It seems as if you would use this. It is wrong. E.g. ##0=\sigma_1([8]_4)\neq [\sigma_1(8)]_4=1+2+4+8=3.## I am not sure if you use it since the intermediate steps are missing.

Another point is: How do you know that the number of ##-1##s and the number of ##+1##s are equal? What if ##k_i## is even?
 
  • #3
I think I know what you tried to do.

From ##a=4k+3=p_1^{k_1}\cdot\ldots\cdot p_r^{k_r}## we get
\begin{align*}
[3]_4= [p_1]_4^{k_1}\cdot\ldots\cdot [p_r]_4^{k_r}
\end{align*}
where ##m:=[n]_4## is the abbreviation of ##n \equiv m \in \{0,1,2,3\}\pmod{4}.##

Now we have to examine the right-hand side.
All ##[p_i]_4 \neq 0.## Powers of ##[p_i]_4=2## result in ##0## or ##2## so that they cannot occur since we have only ##[3]_4 ## on the left. All ##[p_i]_4=1## are of no interest since they do not change the product. From the left-hand side we know, that at least one ##[p_i]_4=3## has to occur, say it is ##p_1.## But ##[3]_4\cdot [3]_4=[1]_4## and we need a ##[3]_4.## This means that ##k_1## has to be odd, for otherwise, we would end up with ##[1]_4.## In case ##k_1## is indeed even, then there has to be another index ##j## with ##[p_j]_4=[3]_4## and ##k_j## odd. In such a case we would choose ##j## as our first prime. Say ##k_1=2l_1+1.##

Therefore, we can assume that ##[p_1^{k_1}]_4=[3]_4^{2l_1+1}##. Now
\begin{align*}
\sigma_1([a]_4)&\equiv \prod_{i=1}^r \sigma_1([p_i]_4)^{k_i} \equiv \sigma_1([3^{2l_1+1}]_4) \prod_{i=2}^r \sigma_1([p_i]_4)^{k_i}\\
&\equiv \dfrac{3^{2l_1+2}-1}{3-1}\prod_{i=^2}^r \sigma_1([p_i]_4)^{k_i} \\
&\equiv \dfrac{9^m-1}{2}\prod_{i=^2}^r \sigma_1([p_i]_4)^{k_i} \\
&\equiv 0\pmod{4}
\end{align*}

with ##m=l_1+1\geq 1## and ##9^m-1 \equiv 0\pmod{8},## hence ##\dfrac{9^m-1}{2}\equiv 0\pmod{4}.##

You have to explain why you may assume ##p_1=3,## which by the way is wrong. We can only assume that ##[p_1]_4\equiv [3]_4.##

And make sure that you first pass the entire formula modulo four, and then apply ##\sigma_1.##
 
Last edited:
  • #4
The most important question when I read a proof, and therefore the most important question when you write a proof, is WHY. I ask this from line to line. If anybody is asking you this, you should be able to answer. In the best case, it is already written in the proof.
 
  • #5
Okay, so I revised this proof:

Let ## 4k+3=p_{1}^{k_1}p_{2}^{k_2}\dotsb p_{s}^{k_s} ##.
Then ## 4\equiv 0\pmod {4} ## and ## 4k+3\equiv 3\pmod {4} ##.
Thus ## p_{i}^{k_{i}}\not\equiv 0\pmod {4} ## for ## i=1, 2,..., s ##.
Suppose all ## p_{i}^{k_{i}}\equiv 1\pmod {4} ##.
Then ## p_{1}^{k_{1}}p_{2}^{k_{2}}\dotsb p_{s}^{k_{s}}\equiv 1\pmod {4} ##.
Since ## p_{1}^{k_{1}}p_{2}^{k_{2}}\dotsb p_{s}^{k_{s}}\equiv 3\pmod {4} ##,
it follows that ## \exists ## one ## p_{i} ## satisfying ## p_{i}^{k_{i}}\equiv 3\pmod {4} ##.
This means ## p_{i}\equiv 3\pmod {4} ##.
Observe that ## p_{i}^{2}\equiv 9\equiv 1\pmod {4} ## and ## p_{i}^{3}\equiv 3\pmod {4} ##.
If ## p_{i}^{r}\equiv 3\pmod {4} ##, then ## r ## must be odd.
This implies ## p_{i}^{k_{i}}\equiv 3\pmod {4} ## where ## k_{i} ## is odd.
Now we have
\begin{align*}
&\sigma_{1}(p_{i}^{k_{i}})=p_{i}^{k_{i}}+p_{i}^{k_{i}-1}+\dotsb +p_{i}+1\\
&\equiv (3+1+\dotsb +3+1)\pmod {4}\\
&\equiv 0\pmod {4},\\
\end{align*}
because ## p_{i}^{r}\equiv 3\pmod {4} ## if ## r ## is odd and ## p_{i}^{r}\equiv 1\pmod {4} ## if ## r ## is even.
Thus
\begin{align*}
4\mid \sigma_{1}(p_{i}^{k_{i}} ) & \implies 4\mid \sigma (p_{1}^{k_{1}} )\dotsb \sigma_{1} (p_{i}^{k_{i}})\dotsb \sigma_{1} ( p_{s}^{k_{s}} ) \\
&\implies4\mid \sigma_{1} (p_{1}^{k_{1}}p_{2}^{k_{2}}\dotsb p_{s}^{k_{s}}).\\
\end{align*}
Therefore, ## 4\mid \sigma_{1} (4k+3) ## for each positive integer ## k ##.
 
Last edited by a moderator:
  • #6
Correct.

I edited the typos. If you add one # too many or set one bracket wrong, then it doesn't render properly. It's sometimes hard to find if formulas got lengthy.
 
Back
Top