Prove that ## a^{3}+1 ## is divisible by ## 7 ##.

  • Thread starter Math100
  • Start date
  • #1
717
184
Homework Statement
If ## 7\nmid a ##, prove that either ## a^{3}+1 ## or ## a^{3}-1 ## is divisible by ## 7 ##.
Relevant Equations
None.
Proof:

Suppose ## 7\nmid a ##.
Applying the Fermat's theorem produces:
## a^{7-1}\equiv 1\pmod {7}\implies a^{6}\equiv 1\pmod {7} ##.
This means ## 7\mid (a^{6}-1) ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1) ##.
Thus ## 7\nmid (a^{3}-1)\implies 7\mid (a^{3}+1) ## and ## 7\nmid (a^{3}+1)\implies 7\mid (a^{3}-1) ##.
Therefore, if ## 7\nmid a ##, then either ## a^{3}+1 ## or ## a^{3}-1 ## is divisible by ## 7 ##.
 
  • #2
Correct.

You basically use that ##7## is a prime number. That means, ##7\neq \pm1## and if ##7\,|\,a\cdot b \Longrightarrow 7\,|\,a \text{ or } 7\,|\,b.## This is the correct definition of a prime number.
 

Suggested for: Prove that ## a^{3}+1 ## is divisible by ## 7 ##.

Back
Top