Prove that ## a^{3}\equiv 0, 1 ##, or ## 6\pmod {7} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
For any integer a, it can be expressed as congruent to 0, 1, 2, 3, 4, 5, or 6 modulo 7. The property of congruence states that if a is congruent to b modulo n, then a cubed is congruent to b cubed modulo n. This leads to the results of a cubed being congruent to 0, 1, 8, 27, 64, 125, or 216 modulo 7, which simplifies to 0, 1, 1, 6, 1, 6, or 6 modulo 7. Consequently, a cubed is congruent to 0, 1, or 6 modulo 7. Thus, the proof confirms that a cubed is congruent to 0, 1, or 6 modulo 7 for any integer a.
Math100
Messages
816
Reaction score
229
Homework Statement
Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations
None.
Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
 
  • Like
Likes Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations:: None.

Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
Correct.
 
  • Like
Likes Delta2 and Math100
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top