Prove that ## a^{3}\equiv 0, 1 ##, or ## 6\pmod {7} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
For any integer a, it can be expressed as congruent to 0, 1, 2, 3, 4, 5, or 6 modulo 7. The property of congruence states that if a is congruent to b modulo n, then a cubed is congruent to b cubed modulo n. This leads to the results of a cubed being congruent to 0, 1, 8, 27, 64, 125, or 216 modulo 7, which simplifies to 0, 1, 1, 6, 1, 6, or 6 modulo 7. Consequently, a cubed is congruent to 0, 1, or 6 modulo 7. Thus, the proof confirms that a cubed is congruent to 0, 1, or 6 modulo 7 for any integer a.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations
None.
Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
 
  • Like
Likes Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations:: None.

Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
Correct.
 
  • Like
Likes Delta2 and Math100
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top