Prove that ## a^{3}\equiv 0, 1 ##, or ## 6\pmod {7} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof demonstrates that for any integer ## a ##, the expression ## a^{3} \equiv 0, 1, ## or ## 6 \pmod{7} ## holds true. By considering all possible residues of ## a ## modulo 7, which are 0 through 6, the proof shows that the cubes of these residues yield results that simplify to 0, 1, or 6 modulo 7. Specifically, the calculations reveal that ## a^{3} \equiv 0, 1, 1, 6, 1, 6 ## or ## 6 \pmod{7} ##. Therefore, the conclusion is established definitively.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with integer properties
  • Basic knowledge of exponentiation
  • Ability to manipulate congruences
NEXT STEPS
  • Study properties of modular arithmetic in depth
  • Explore the concept of congruences and their applications
  • Learn about Fermat's Little Theorem and its implications
  • Investigate polynomial residues and their behavior modulo n
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in modular arithmetic proofs.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations
None.
Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
 
  • Like
Likes   Reactions: Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
Relevant Equations:: None.

Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
Correct.
 
  • Like
Likes   Reactions: Delta2 and Math100

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K