Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving the relationship between two functions, \( g(x) \) and \( f(x) \), specifically that \( g(x) = f(x) \log{x} - \int_{2}^{x} t^{-1} f(t) dt \). The subject area includes number theory and the properties of prime numbers, particularly those congruent to 3 modulo 10.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the application of Abel's summation formula to derive the relationship between \( g(x) \) and \( f(x) \). There are attempts to clarify the definitions of \( f(x) \) and \( g(x) \) as sums over primes. Some participants question the correctness of calculations related to \( g(40) \) and the interpretation of logarithmic values.

Discussion Status

The discussion is active, with participants providing insights and corrections regarding the calculations of \( f(40) \) and \( g(40) \). There is a recognition of the need to clarify the definitions and assumptions used in the proofs. Multiple interpretations of the logarithmic values are being explored, but no consensus has been reached on the exact values or the implications of the proofs.

Contextual Notes

Participants are operating under the constraints of homework rules, which may limit the extent of guidance provided. There is an ongoing examination of the assumptions regarding the behavior of \( f(x) \) and \( g(x) \) as \( x \) approaches infinity, particularly in relation to prime number distributions.

Math100
Messages
823
Reaction score
234
Homework Statement
Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations
Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations:: Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.

Math100 said:
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##

Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
##\approx 6.8##
Math100 said:
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
##\approx 6.8##

It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
 
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##

Math100 said:
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
Thank you for pointing that out on part a). Also, another part of this question asks to prove that ## g(x)\sim\frac{1}{4}x ## by assuming that ## f(x)\sim\frac{1}{4}\pi(x) ##. By definitions, both ## \pi(x)=\sum_{\substack{prime p\leq x}}1 ## and ## v(x)=\sum_{\substack{prime p\leq x}}\log {p} ## are step functions for ## x\geq 1 ##. In the process of taking the limit of ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=4\cdot \lim_{x\rightarrow \infty}\frac{g(x)}{x} ##, how to prove that ## \lim_{x\rightarrow \infty}\frac{g(x)}{x}=\frac{1}{4} ## so that ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=1 ##?
 
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
So both ## \pi(x)\approx \frac{x}{\log {x}} ## and ## li(x)\approx \frac{x}{\log {x}} ##? How did you get ## (1+O(\log^{-1} (x))) ##?
 
  • Informative
Likes   Reactions: Math100

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
12
Views
3K