Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the equation ## g(x) = f(x) \log{x} - \int_{2}^{x} t^{-1} f(t) dt ##, where ## f(x) = \sum_{\substack{prime p \leq x \\ p \equiv 3 \pmod{10}}} 1 ## and ## g(x) = \sum_{\substack{prime p \leq x \\ p \equiv 3 \pmod{10}}} \log{p} ##. The values calculated are ## f(40) = 3 ## and ## g(40) = \log{897} \approx 6.8 ##. The proof utilizes Abel's summation formula and clarifies the distinction between the functions involved, emphasizing the importance of correct notation and definitions in mathematical proofs.

PREREQUISITES
  • Understanding of Abel's summation formula
  • Familiarity with logarithmic functions and their properties
  • Basic knowledge of prime numbers and modular arithmetic
  • Experience with mathematical proofs and notation
NEXT STEPS
  • Study Abel's summation formula in detail
  • Explore properties of logarithmic integrals and their applications
  • Investigate the distribution of prime numbers, particularly in modular contexts
  • Learn about asymptotic analysis in number theory
USEFUL FOR

Mathematicians, number theorists, and students interested in advanced topics related to prime number distribution and logarithmic functions.

Math100
Messages
817
Reaction score
230
Homework Statement
Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations
Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations:: Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.

Math100 said:
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##

Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
##\approx 6.8##
Math100 said:
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
##\approx 6.8##

It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
 
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##

Math100 said:
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
Thank you for pointing that out on part a). Also, another part of this question asks to prove that ## g(x)\sim\frac{1}{4}x ## by assuming that ## f(x)\sim\frac{1}{4}\pi(x) ##. By definitions, both ## \pi(x)=\sum_{\substack{prime p\leq x}}1 ## and ## v(x)=\sum_{\substack{prime p\leq x}}\log {p} ## are step functions for ## x\geq 1 ##. In the process of taking the limit of ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=4\cdot \lim_{x\rightarrow \infty}\frac{g(x)}{x} ##, how to prove that ## \lim_{x\rightarrow \infty}\frac{g(x)}{x}=\frac{1}{4} ## so that ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=1 ##?
 
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
So both ## \pi(x)\approx \frac{x}{\log {x}} ## and ## li(x)\approx \frac{x}{\log {x}} ##? How did you get ## (1+O(\log^{-1} (x))) ##?
 
  • Informative
Likes   Reactions: Math100

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
12
Views
3K