Prove that such a permutation exists.

  • Context: MHB 
  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Permutation
Click For Summary

Discussion Overview

The discussion revolves around proving the existence of a permutation in the symmetric group \( S_n \) such that no element \( i \) in the set \( N = \{1, 2, \ldots, n\} \) is mapped to its "enemy" set \( E_i \). The context includes various approaches to the problem, including special cases and inductive reasoning.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants assert that a permutation \( \sigma \) exists such that \( \sigma(i) \notin E_i \) for all \( i \in N \), based on the conditions \( r_i \geq 0 \) and \( r_1 + \ldots + r_n \leq n-1 \).
  • One participant proposes a special case where \( r_i \leq 1 \) for all \( i \) and uses the pigeonhole principle to argue for the existence of such a permutation.
  • Another participant suggests an inductive approach, stating that if the result holds for \( n-1 \) elements, it can be extended to \( n \) elements by constructing a new collection of enemies and applying the inductive hypothesis.
  • A later reply introduces a bipartite graph representation of the problem, claiming that the graph has sufficient edges and no isolated vertices, which implies the existence of a perfect matching, thus leading to the required permutation.

Areas of Agreement / Disagreement

Participants present multiple competing views and approaches to the problem, with no consensus reached on a single method or solution. The discussion remains unresolved regarding the most effective proof or approach.

Contextual Notes

Some participants note limitations in their proofs, such as not proving the base case for induction or assuming the inductive hypothesis without full justification. There is also mention of potential oversights in the application of the pigeonhole principle.

Who May Find This Useful

Readers interested in combinatorial mathematics, graph theory, and permutation problems may find the discussion valuable.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $N=\{ 1,2,\ldots ,n \}$.
As usual, take $S_n$ as the set of all bijections from $N$ to $N$.
Corresponding to each element $i$ in $N$ we have a set $E_i \subseteq N$ of "enemies" of $i$.
Denote $|E_i|=r_i$.
Its also given that:
1) $r_i \geq 0, \, \forall i \in N$
2) $r_1 + \ldots + r_n \leq n-1$
Show that there is $\sigma \in S_n$ such that $\sigma (i) \notin E_i \, \, \forall i \in N$.

I am pretty sure that such a sigma really exists.
I can solve it in a special case which I do in the next post. Please help.

EDIT: I hope that we find an algebraic proof of this. (Nod)
 
Last edited:
Physics news on Phys.org
caffeinemachine said:
I can solve it in a special case which I do in the next post. Please help.

Consider the special case where we have an additional constraint which reads:
$r_i \leq 1 \, \, \forall i \in N$

Let $k$ be the number of elements in $N$ which have exactly $1$ enemies. (In our present situation this is equal to the number of elements in $N$ having more than 0 enemies.) Thus $k \leq n-1$.

Assume on the contrary that no such $\sigma$ exists.

So each $\sigma \in S_n$ sends at least one entry in $N$ to its enemy.

Since there are $n!$ elements in $S_n$, By PHP, there is at least one element $i_0 \in N$ which is mapped to its enemy by at least $n!/k$ elements in $S_n$.

BUt its easy to see that there are at least $(n-1)(n-1)!$ elements in $S_n$ which don't send $i_0$ to its enemy.

So there are at most $n!-(n-1)(n-1)!=(n-1)!$ elements in $S_n$ which send $i_0$ to its enemy.

Since $(n-1)! < n!/k$ as $k \leq n-1$ we have a contradiction and the result in the first post holds for this case.
 
caffeinemachine said:
Let $N=\{ 1,2,\ldots ,n \}$.
As usual, take $S_n$ as the set of all bijections from $N$ to $N$.
Corresponding to each element $i$ in $N$ we have a set $E_i \subseteq N$ of "enemies" of $i$.
Denote $|E_i|=r_i$.
Its also given that:
1) $r_i \geq 0, \, \forall i \in N$
2) $r_1 + \ldots + r_n \leq n-1$
Show that there is $\sigma \in S_n$ such that $\sigma (i) \notin E_i \, \, \forall i \in N$.

I am pretty sure that such a sigma really exists.
I can solve it in a special case which I do in the next post. Please help.

EDIT: I hope that we find an algebraic proof of this. (Nod)
I think you can do this by induction, though I struggled to get the details right. The inductive step goes like this. Suppose that the result has been proved for sets containing $n-1$ elements. Given $N$ as in the statement of the problem, the result is trivially true if $r_i=0$ for all $i$. So choose $p\in N$ such that $r_p>0$. Choose $q\in N$ such that $q\notin E_p,$ and choose $\tau \in S_n$ with $\tau(p)=q.$ Now define a new collection of "enemies" $F_i$ on the set $N\setminus\{p\}$ by $j\in F_i\;\Leftrightarrow\; \tau(j) \in E_i.$ Check that $\sum_{i\in N\setminus\{p\}}|F_i| \leqslant n-2$. By the inductive hypothesis there exists a permutation $\rho$ of $N\setminus\{p\}$ such that $\rho(i)\notin F(i)$ for each $i$.

Now define $\sigma:N\to N$ by $\sigma(p) = q$, $\sigma(i) = \tau\rho(i)\ (i\in N\setminus\{p\})$. Then $\sigma (i) \notin E_i \ \forall i \in N$, as required.

I have been a bit sloppy by assuming the inductive hypothesis for an arbitrary set of a given size, but only proving the result for the particular set $N$ consisting of the integers 1 to $n$. But that is just a question of giving names to the elements of the set, and does not affect the proof in any material way. I also neglected to prove the base case for the inductive proof (which is easy but critically important).
 
Opalg said:
I think you can do this by induction, though I struggled to get the details right. The inductive step goes like this. Suppose that the result has been proved for sets containing $n-1$ elements. Given $N$ as in the statement of the problem, the result is trivially true if $r_i=0$ for all $i$. So choose $p\in N$ such that $r_p>0$. Choose $q\in N$ such that $q\notin E_p,$ and choose $\tau \in S_n$ with $\tau(p)=q.$ Now define a new collection of "enemies" $F_i$ on the set $N\setminus\{p\}$ by $j\in F_i\;\Leftrightarrow\; \tau(j) \in E_i.$ Check that $\sum_{i\in N\setminus\{p\}}|F_i| \leqslant n-2$. By the inductive hypothesis there exists a permutation $\rho$ of $N\setminus\{p\}$ such that $\rho(i)\notin F(i)$ for each $i$.

Now define $\sigma:N\to N$ by $\sigma(p) = q$, $\sigma(i) = \tau\rho(i)\ (i\in N\setminus\{p\})$. Then $\sigma (i) \notin E_i \ \forall i \in N$, as required.

I have been a bit sloppy by assuming the inductive hypothesis for an arbitrary set of a given size, but only proving the result for the particular set $N$ consisting of the integers 1 to $n$. But that is just a question of giving names to the elements of the set, and does not affect the proof in any material way. I also neglected to prove the base case for the inductive proof (which is easy but critically important).
That's exactly the kind of solution I was looking for. Thank you.
Here's another solution. One can form a bipartite graph $G$ whose partite sets are $X=N$ and $Y=N$. $x \in X$ and $y \in Y$ have an edge between them if $y \notin E_x$. Then $G$ has at least $n^2-n+1$ edges and has no isolated vertex. Its easy to show that, using Konig-Egervary theorem, that $G$ has a perfect matching. Now its easy to find the required permutation.
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K