Prove that such a permutation exists.

  • Context: MHB 
  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Permutation
Click For Summary
SUMMARY

The discussion centers on proving the existence of a permutation σ in the symmetric group S_n such that σ(i) is not an enemy of i for all i in the set N = {1, 2, ..., n}. Given the constraints that each element i has a set of enemies E_i with |E_i| = r_i, and the total number of enemies across all elements satisfies r_1 + ... + r_n ≤ n - 1, the proof employs the principle of induction and the Konig-Egervary theorem to establish the existence of such a permutation. The inductive approach demonstrates that if the result holds for n-1 elements, it also holds for n elements, thus confirming the claim.

PREREQUISITES
  • Understanding of symmetric groups, specifically S_n.
  • Familiarity with the principle of induction in mathematical proofs.
  • Knowledge of bipartite graphs and perfect matchings.
  • Comprehension of the Konig-Egervary theorem in graph theory.
NEXT STEPS
  • Study the properties and applications of symmetric groups, particularly S_n.
  • Learn about induction techniques in combinatorial proofs.
  • Explore bipartite graphs and their significance in matching problems.
  • Investigate the Konig-Egervary theorem and its implications in graph theory.
USEFUL FOR

Mathematicians, computer scientists, and students interested in combinatorial proofs, graph theory, and permutation problems will benefit from this discussion.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $N=\{ 1,2,\ldots ,n \}$.
As usual, take $S_n$ as the set of all bijections from $N$ to $N$.
Corresponding to each element $i$ in $N$ we have a set $E_i \subseteq N$ of "enemies" of $i$.
Denote $|E_i|=r_i$.
Its also given that:
1) $r_i \geq 0, \, \forall i \in N$
2) $r_1 + \ldots + r_n \leq n-1$
Show that there is $\sigma \in S_n$ such that $\sigma (i) \notin E_i \, \, \forall i \in N$.

I am pretty sure that such a sigma really exists.
I can solve it in a special case which I do in the next post. Please help.

EDIT: I hope that we find an algebraic proof of this. (Nod)
 
Last edited:
Physics news on Phys.org
caffeinemachine said:
I can solve it in a special case which I do in the next post. Please help.

Consider the special case where we have an additional constraint which reads:
$r_i \leq 1 \, \, \forall i \in N$

Let $k$ be the number of elements in $N$ which have exactly $1$ enemies. (In our present situation this is equal to the number of elements in $N$ having more than 0 enemies.) Thus $k \leq n-1$.

Assume on the contrary that no such $\sigma$ exists.

So each $\sigma \in S_n$ sends at least one entry in $N$ to its enemy.

Since there are $n!$ elements in $S_n$, By PHP, there is at least one element $i_0 \in N$ which is mapped to its enemy by at least $n!/k$ elements in $S_n$.

BUt its easy to see that there are at least $(n-1)(n-1)!$ elements in $S_n$ which don't send $i_0$ to its enemy.

So there are at most $n!-(n-1)(n-1)!=(n-1)!$ elements in $S_n$ which send $i_0$ to its enemy.

Since $(n-1)! < n!/k$ as $k \leq n-1$ we have a contradiction and the result in the first post holds for this case.
 
caffeinemachine said:
Let $N=\{ 1,2,\ldots ,n \}$.
As usual, take $S_n$ as the set of all bijections from $N$ to $N$.
Corresponding to each element $i$ in $N$ we have a set $E_i \subseteq N$ of "enemies" of $i$.
Denote $|E_i|=r_i$.
Its also given that:
1) $r_i \geq 0, \, \forall i \in N$
2) $r_1 + \ldots + r_n \leq n-1$
Show that there is $\sigma \in S_n$ such that $\sigma (i) \notin E_i \, \, \forall i \in N$.

I am pretty sure that such a sigma really exists.
I can solve it in a special case which I do in the next post. Please help.

EDIT: I hope that we find an algebraic proof of this. (Nod)
I think you can do this by induction, though I struggled to get the details right. The inductive step goes like this. Suppose that the result has been proved for sets containing $n-1$ elements. Given $N$ as in the statement of the problem, the result is trivially true if $r_i=0$ for all $i$. So choose $p\in N$ such that $r_p>0$. Choose $q\in N$ such that $q\notin E_p,$ and choose $\tau \in S_n$ with $\tau(p)=q.$ Now define a new collection of "enemies" $F_i$ on the set $N\setminus\{p\}$ by $j\in F_i\;\Leftrightarrow\; \tau(j) \in E_i.$ Check that $\sum_{i\in N\setminus\{p\}}|F_i| \leqslant n-2$. By the inductive hypothesis there exists a permutation $\rho$ of $N\setminus\{p\}$ such that $\rho(i)\notin F(i)$ for each $i$.

Now define $\sigma:N\to N$ by $\sigma(p) = q$, $\sigma(i) = \tau\rho(i)\ (i\in N\setminus\{p\})$. Then $\sigma (i) \notin E_i \ \forall i \in N$, as required.

I have been a bit sloppy by assuming the inductive hypothesis for an arbitrary set of a given size, but only proving the result for the particular set $N$ consisting of the integers 1 to $n$. But that is just a question of giving names to the elements of the set, and does not affect the proof in any material way. I also neglected to prove the base case for the inductive proof (which is easy but critically important).
 
Opalg said:
I think you can do this by induction, though I struggled to get the details right. The inductive step goes like this. Suppose that the result has been proved for sets containing $n-1$ elements. Given $N$ as in the statement of the problem, the result is trivially true if $r_i=0$ for all $i$. So choose $p\in N$ such that $r_p>0$. Choose $q\in N$ such that $q\notin E_p,$ and choose $\tau \in S_n$ with $\tau(p)=q.$ Now define a new collection of "enemies" $F_i$ on the set $N\setminus\{p\}$ by $j\in F_i\;\Leftrightarrow\; \tau(j) \in E_i.$ Check that $\sum_{i\in N\setminus\{p\}}|F_i| \leqslant n-2$. By the inductive hypothesis there exists a permutation $\rho$ of $N\setminus\{p\}$ such that $\rho(i)\notin F(i)$ for each $i$.

Now define $\sigma:N\to N$ by $\sigma(p) = q$, $\sigma(i) = \tau\rho(i)\ (i\in N\setminus\{p\})$. Then $\sigma (i) \notin E_i \ \forall i \in N$, as required.

I have been a bit sloppy by assuming the inductive hypothesis for an arbitrary set of a given size, but only proving the result for the particular set $N$ consisting of the integers 1 to $n$. But that is just a question of giving names to the elements of the set, and does not affect the proof in any material way. I also neglected to prove the base case for the inductive proof (which is easy but critically important).
That's exactly the kind of solution I was looking for. Thank you.
Here's another solution. One can form a bipartite graph $G$ whose partite sets are $X=N$ and $Y=N$. $x \in X$ and $y \in Y$ have an edge between them if $y \notin E_x$. Then $G$ has at least $n^2-n+1$ edges and has no isolated vertex. Its easy to show that, using Konig-Egervary theorem, that $G$ has a perfect matching. Now its easy to find the required permutation.
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K