Prove that the statements are equivalent

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Equivalent
That is, $u_{i} = \displaystyle\sum_{j=1}^{d_{i}}0\cdot b_{ij} = 0$ for all $1\leq i\leq k.$(III) $\Rightarrow$ (I)Can you prove this? Hint: If $u_{i} = \displaystyle\sum_{j=1}^{d_{i}}\lambda_{j}^{i}b_{ij} = 0_V$ for all $i$, then what is the relation between the scalars $\lambda_{j}^{i}$'s?
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! 😊

Let $\mathbb{K}$ be a field and let $V$ be a $\mathbb{K}$-vector space. Let $1\leq k\in \mathbb{N}$ and let $U_1, \ldots , U_k\leq_{\mathbb{K}}V$ be subspaces of $V$. Let $d_i:=\dim_{\mathbb{K}}U_i$ and $\mathcal{B}_i:=(b_{i,1}, \ldots , b_{i, d_i})$.

  1. Show that $\displaystyle{\sum_{i=1}^kU_i=\left \{\sum_{i=1}^ku_i\mid u_i\in U_i\right \}\leq_{\mathbb{K}}V}$.
  2. It holds that $\displaystyle{\sum_{i=1}^kU_i=\text{span}(b_{1,1}, \ldots ,b_{1,d_1}, b_{2,1}, \ldots , b_{k,d_k})}$ and that $\displaystyle{\dim_{\mathbb{K}}\sum_{i=1}^kU_i\leq \sum_{i=1}^kd_i}$.
  3. Show that the following are equivalent:
    1. Let $u_1\in U_1, \ldots , u_k\in U_k$ such that $\displaystyle{\sum_{i=1}^ku_i=0_V}$, it follows that $u_1=\ldots =u_k=0_V$.
    2. For all $2\leq m\leq k$ it holds that $\displaystyle{\left (\sum_{i=1}^{m-1}U_i\right )\cap U_m=\{0_V\}}$.
    3. $\displaystyle{\dim_{\mathbb{K}}\left (\sum_{i=1}^kU_i\right )=\sum_{i=1}^kd_i}$.
    4. $\mathcal{B}:=(b_{1,1}, \ldots ,b_{1,d_1}, b_{2,1}, \ldots , b_{k,d_k})$ is a basis of $\displaystyle{\sum_{i=1}^kU_i}$.

I have done the following:

For question 1 we show that the 3 conditions are satisfied:

Since $U_i$ are subspaces, it holds that $0\in U_i$. So, it holds that $\displaystyle{0=\sum_{i=1}^k0\in \sum_{i=1}^kU_i}$. Therefore, $\displaystyle{\sum_{i=1}^kU_i}$ is a non-empty set.

Let $\displaystyle{u=\sum_{i=1}^ku_i}$ and $\displaystyle{u'=\sum_{i=1}^ku_i'}$ be two elements of $\displaystyle{\sum_{i=1}^kU_i}$ (mit $u_i, u_i' \in U_i$ for all $i \in \{1, 2, \ldots , n\}$). Then we have that \begin{equation*}u+u'=\sum_{i=1}^ku_i+\sum_{i=1}^ku_i'=\sum_{i=1}^k(u_i+u_i')\in \sum_{i=1}^kU_i\end{equation*} We have that $u_i+u_i'\in U_i$, since $U_i$ is a subspace, for each $i \in \{1, 2, \ldots , n\}$.

Let $\lambda\in \mathbb{K}$ be a scalar and $\displaystyle{u=\sum_{i=1}^ku_i}$ an element of $\displaystyle{\sum_{i=1}^kU_i}$. Then we have that \begin{equation*}\lambda u=\lambda \sum_{i=1}^ku_i=\sum_{i=1}^k(\lambda u_i)\in \sum_{i=1}^kU_i\end{equation*} We have that $\lambda u_i\in U_i$, since $U_i$ is a subspace, for each $i \in \{1, 2, \ldots , n\}$.

Therefore $\displaystyle{\sum_{i=1}^kU_i}$ is a subspace of $V$. For question 2 I have done the following:
$B:=(b{1,1}, \ldots , b_{1, d_1}, b_{2,1}, \ldots , b_{k, d_k})$ is a generating set of $\displaystyle{\sum_{i=1}^kU_i}$, since $B$ contains the generating sets of all $U_i$.

A linear independent subset of $\mathcal{B}$ (or $\mathcal{B}$ itself) is a basis of $\displaystyle{\sum_{i=1}^kU_i}$. This means that the number of elements of the basis is at most $\displaystyle{\sum_{i=1}^kd_i}$. This means that $\displaystyle{\dim_{\mathbb{K}}\sum_{i=1}^kU_i\leq \sum_{i=1}^kd_i}$. Is everything correct so far? :unsure:Could you give me a hint for question 3 ? :unsure:
 
Physics news on Phys.org
  • #2
At the question 3 we have to show thw following equivalences: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$, right?For $(1) \Rightarrow (2)$ :

Let $\displaystyle{x\in \left (\sum_{i=1}^{m-1}U_i\right )\cap U_m}$. That means that $\displaystyle{x=\sum_{i=1}^{m-1}u_i}$ and $x=-u_m$. Subtracting these equations we get $\displaystyle{x-x=\sum_{i=1}^{m-1}u_i-(-u_m)\Rightarrow \sum_{i=1}^{m-1}u_i+u_m=0\Rightarrow \sum_{i=1}^{m}u_i=0 }$.
From the assumption (1) we get that $u_i=0$ fr all $1\leq i\leq m$. Therefore we have that $\displaystyle{x=\sum_{i=1}^{m-1}u_i=0}$ and $x=-u_m=0$, which means that $\displaystyle{\left (\sum_{i=1}^{m-1}U_i\right )\cap U_m=\{0\}}$.For $(2) \Rightarrow (3)$ :

We already have that $\displaystyle{\dim_{\mathbb{K}}\sum_{i=1}^kU_i\leq \sum_{i=1}^kd_i}$. From the assumption (2) do we have that the $\mathcal{B}:=(b{1,1}, \ldots , b_{1, d_1}, b_{2,1}, \ldots , b_{k, d_k})$ is linearly independent?For $(3) \Rightarrow (4)$ :

From the exercise 2 and teh assumption (3) the result follows, or not?For $(4) \Rightarrow (1)$ :

Do we use here the condition for linear independence?:unsure:
 
  • #3
Hi mathmari,

I will use Hindu-Arabic numerals (i.e., 1-3) for the primary problem statements and Roman numerals (i.e., I-IV) for the subparts to problem 3.

(I) $\Rightarrow$ (II)
Your proof looks good, nicely done.

(II) $\Rightarrow$ (III)
As you've shown in question (2), $\mathcal{B}=(b_{1,1},\ldots, b_{1,d_{1}},\ldots, b_{k,1},\ldots, b_{k,d_{k}})$ is a spanning set for $\displaystyle\sum_{i=1}^{k}U_{i}.$ Hence, we only need to show that the assumption in (II) implies the linear independence of $\mathcal{B}.$ I will give a fairly complete proof sketch of this and wait to hear back from you if you have any questions about filling in some of the finer details.

By way of contradiction, suppose $\mathcal{B}$ is not a linearly independent set. Then there is a vector in $\mathcal{B}$ that can be expressed as a linear combination of the other vectors in $\mathcal{B}$. Without loss of generality, we can assume this vector is $b_{kd_{k}}$ and write $$b_{kd_{k}} = \displaystyle\sum_{i=1}^{k-1}\displaystyle\sum_{j=1}^{d_{i}}\lambda_{j}^{i}b_{ij} + \sum_{j=1}^{d_{k}-1}\lambda_{j}^{k}b_{kj}.$$ Subtraction gives $$b_{kd_{k}}-\sum_{j=1}^{d_{k}-1}\lambda_{j}^{k}b_{kj} = \displaystyle\sum_{i=1}^{k-1}\displaystyle\sum_{j=1}^{d_{i}}\lambda_{j}^{i}b_{ij}.$$ Hence, by assumption (II), $$b_{kd_{k}}-\sum_{j=1}^{d_{k}-1}\lambda_{j}^{k}b_{kj} = 0.$$ But this last equation contradicts the fact that $\mathcal{B}_{k}$ is a basis for $U_{k}$. Hence, $\mathcal{B}$ is a basis for $\displaystyle\sum_{i=1}^{k}U_{i}$ and $\text{dim}_{\mathbb{K}}\left( \displaystyle\sum_{i=1}^{k}U_{i}\right) = \displaystyle\sum_{i=1}^{k}d_{i}.$

(III) $\Rightarrow$ (IV)
You are correct here as well. A spanning set of the space with the same number of elements as the dimension of the space is a basis for the space.

(IV) $\Rightarrow$ (I)
Write $u_{i} = \displaystyle\sum_{j=1}^{d_{i}}\lambda_{j}^{i}b_{ij}.$ Then $$\sum_{i=1}^{k}u_{i} = 0\,\Longrightarrow\,\sum_{i=1}^{k}\sum_{j=1}^{d_{i}}\lambda_{j}^{i}b_{ij} = 0.$$ Since $\mathcal{B}$ is a basis for $\displaystyle\sum_{i=1}^{k}U_{i}$, it follows that all the $\lambda_{j}^{i}$'s must be zero.
 
Last edited:

1. How do you prove that two statements are equivalent?

To prove that two statements are equivalent, you must show that they have the same truth value. This can be done by using logical equivalences, such as the commutative, associative, and distributive properties, to manipulate one statement into the other. If you can show that the two statements are logically equivalent, then they are considered to be equivalent.

2. What is the importance of proving statements are equivalent?

Proving that statements are equivalent is important in mathematics and logic because it allows us to simplify complex statements and make logical deductions. It also helps us to understand the relationships between different statements and their underlying logic.

3. Can two statements be equivalent but not identical?

Yes, two statements can be equivalent without being identical. This means that they have the same truth value, but they may be worded differently or have different structures. For example, "All mammals have fur" is equivalent to "Everything with fur is a mammal", even though they are not identical statements.

4. How can you use a truth table to prove that statements are equivalent?

A truth table is a useful tool for proving that statements are equivalent. To use a truth table, you list all possible combinations of truth values for the individual statements and then use logical operators to determine the truth value of the combined statement. If the resulting truth values are the same for both statements, then they are equivalent.

5. Are there any shortcuts for proving statements are equivalent?

Yes, there are some shortcuts for proving statements are equivalent. One common shortcut is to use the biconditional operator (↔) to show that two statements are equivalent. Another shortcut is to use previously proven logical equivalences to simplify the statements. Additionally, understanding the properties of logical operators can help to quickly prove equivalence between statements.

Similar threads

  • Linear and Abstract Algebra
Replies
6
Views
756
  • Linear and Abstract Algebra
Replies
1
Views
830
  • Linear and Abstract Algebra
Replies
10
Views
1K
  • Linear and Abstract Algebra
Replies
4
Views
915
  • Linear and Abstract Algebra
Replies
9
Views
989
  • Linear and Abstract Algebra
Replies
5
Views
1K
  • Linear and Abstract Algebra
Replies
23
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
3
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
756
Back
Top