MHB Prove the Following Mathematic Form

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Form Mathematic
Click For Summary
The discussion centers on proving that the expression \( A = \overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m} \) can be represented as the product of two consecutive integers, \( A = k \times (k + 1) \), where \( k \in \mathbb{N} \). The proof involves manipulating the expression for \( A \) into a form that reveals its factors, ultimately showing that \( A = (10^m - 1)(10^m + 2) / 9 \). This leads to the conclusion that both factors are multiples of 3 and differ by 3, allowing for the division by 9 to yield \( A = k(k + 1) \) with \( k = \frac{10^m - 1}{3} \). The discussion highlights the algebraic steps taken to arrive at this conclusion, confirming the relationship between \( A \) and consecutive integers. The proof is presented as a satisfying mathematical solution.
Albert1
Messages
1,221
Reaction score
0
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)
 
Last edited:
Mathematics news on Phys.org
\displaystyle A=\frac{10^m-1}{9} \times 10^m +2 \times \frac{10^m-1}{9}

\displaystyle 9A=(10^m-1) \times 10^m +2 \times (10^m-1)

\displaystyle 9A=10^{2m} -10^m +2 \times 10^m-2

\displaystyle 9A=10^{2m} +10^m - 2

\displaystyle 9A=(10^m-1)(10^m +2)

Each factor on the right is a multiple of 3 and they differ by 3 so on dividing by 9 we get \displaystyle A=k(k+1) where \displaystyle k = \frac{10^m-1}{3} .

I nice start to my day, thank you :)
 
Hi MR

A nice solution (Clapping)
 
Albert said:
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)

$A=\overbrace{ 11-------1 }^{m}\times 10^m+\underbrace{ 1-------1 }_{m}\times 2$
$=\overbrace{ 11-------1 }^{m}\times (10^m+2)=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 99-------9 }^{m}+3)$
$=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 33-------3 }^{m}\times 3+3)$
$=\overbrace{ 33-------3 }^{m}\times (\overbrace{ 33-------3 }^{m}+1)=k\times (k+1)$
($k=\overbrace{ 33-------3 }^{m}$)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
573
Replies
10
Views
2K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K