MHB Prove the Following Mathematic Form

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Form Mathematic
AI Thread Summary
The discussion centers on proving that the expression \( A = \overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m} \) can be represented as the product of two consecutive integers, \( A = k \times (k + 1) \), where \( k \in \mathbb{N} \). The proof involves manipulating the expression for \( A \) into a form that reveals its factors, ultimately showing that \( A = (10^m - 1)(10^m + 2) / 9 \). This leads to the conclusion that both factors are multiples of 3 and differ by 3, allowing for the division by 9 to yield \( A = k(k + 1) \) with \( k = \frac{10^m - 1}{3} \). The discussion highlights the algebraic steps taken to arrive at this conclusion, confirming the relationship between \( A \) and consecutive integers. The proof is presented as a satisfying mathematical solution.
Albert1
Messages
1,221
Reaction score
0
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)
 
Last edited:
Mathematics news on Phys.org
\displaystyle A=\frac{10^m-1}{9} \times 10^m +2 \times \frac{10^m-1}{9}

\displaystyle 9A=(10^m-1) \times 10^m +2 \times (10^m-1)

\displaystyle 9A=10^{2m} -10^m +2 \times 10^m-2

\displaystyle 9A=10^{2m} +10^m - 2

\displaystyle 9A=(10^m-1)(10^m +2)

Each factor on the right is a multiple of 3 and they differ by 3 so on dividing by 9 we get \displaystyle A=k(k+1) where \displaystyle k = \frac{10^m-1}{3} .

I nice start to my day, thank you :)
 
Hi MR

A nice solution (Clapping)
 
Albert said:
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)

$A=\overbrace{ 11-------1 }^{m}\times 10^m+\underbrace{ 1-------1 }_{m}\times 2$
$=\overbrace{ 11-------1 }^{m}\times (10^m+2)=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 99-------9 }^{m}+3)$
$=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 33-------3 }^{m}\times 3+3)$
$=\overbrace{ 33-------3 }^{m}\times (\overbrace{ 33-------3 }^{m}+1)=k\times (k+1)$
($k=\overbrace{ 33-------3 }^{m}$)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top