Prove the Following Mathematic Form

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Form Mathematic
Click For Summary
SUMMARY

The discussion centers on proving that the expression $A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$ can be represented as the product of two consecutive integers, specifically $A=k\times (k+1)$ where $k\in \mathbb{N}$. The proof utilizes algebraic manipulation, showing that $A$ can be expressed as $A=\frac{10^m-1}{9} \times 10^m +2 \times \frac{10^m-1}{9}$. The final formulation reveals that $A$ can be factored into $(10^m-1)(10^m +2)$, confirming that both factors are multiples of 3, leading to the conclusion that $A=k(k+1)$ with $k = \frac{10^m-1}{3}$.

PREREQUISITES
  • Understanding of algebraic manipulation and factorization
  • Familiarity with mathematical notation and expressions
  • Knowledge of properties of consecutive integers
  • Basic understanding of number theory concepts
NEXT STEPS
  • Study the properties of consecutive integers in number theory
  • Explore algebraic identities and their applications in proofs
  • Learn about the significance of modular arithmetic in factorization
  • Investigate the role of polynomial expressions in mathematical proofs
USEFUL FOR

Mathematicians, educators, and students interested in number theory, algebra, and mathematical proofs will benefit from this discussion.

Albert1
Messages
1,221
Reaction score
0
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)
 
Last edited:
Mathematics news on Phys.org
\displaystyle A=\frac{10^m-1}{9} \times 10^m +2 \times \frac{10^m-1}{9}

\displaystyle 9A=(10^m-1) \times 10^m +2 \times (10^m-1)

\displaystyle 9A=10^{2m} -10^m +2 \times 10^m-2

\displaystyle 9A=10^{2m} +10^m - 2

\displaystyle 9A=(10^m-1)(10^m +2)

Each factor on the right is a multiple of 3 and they differ by 3 so on dividing by 9 we get \displaystyle A=k(k+1) where \displaystyle k = \frac{10^m-1}{3} .

I nice start to my day, thank you :)
 
Hi MR

A nice solution (Clapping)
 
Albert said:
$A=\overbrace{ 11-------1 }^{m}\underbrace{ 22-------2 }_{m}$

prove :$A=k\times (k+1),\,\, where\,\, k\in N$

(A can be expressed as the multiplication of two consecutive positive integers)

$A=\overbrace{ 11-------1 }^{m}\times 10^m+\underbrace{ 1-------1 }_{m}\times 2$
$=\overbrace{ 11-------1 }^{m}\times (10^m+2)=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 99-------9 }^{m}+3)$
$=\overbrace{ 11-------1 }^{m}\times (\overbrace{ 33-------3 }^{m}\times 3+3)$
$=\overbrace{ 33-------3 }^{m}\times (\overbrace{ 33-------3 }^{m}+1)=k\times (k+1)$
($k=\overbrace{ 33-------3 }^{m}$)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
916
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K