Prove the lim n→∞ (1^1+2^2+3^3+....+(n−1)^(n−1)+n^n)/(n^n)=1.

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
SUMMARY

The limit of the expression $$\lim_{{n}\to{\infty}}\frac{1^1+2^2+3^3+...+(n-1)^{n-1}+n^n}{n^n}$$ converges to 1. This conclusion is supported by the contributions of forum members, particularly June29, who suggested exploring the relationship between the limit and Riemann sums. The discussion emphasizes the importance of rigorous mathematical proof in understanding the behavior of sequences as they approach infinity.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with Riemann sums
  • Knowledge of sequences and series
  • Basic mathematical proof techniques
NEXT STEPS
  • Research Riemann sums and their applications in limits
  • Study advanced calculus concepts related to sequences
  • Explore mathematical proof strategies for limits
  • Examine the behavior of polynomial sequences as n approaches infinity
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced limit proofs and Riemann sums.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove

$$\lim_{{n}\to{\infty}}\frac{1^1+2^2+3^3+...+(n-1)^{n-1}+n^n}{n^n} = 1.$$
 
Physics news on Phys.org
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
 
Last edited:
June29 said:
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?
 
lfdahl said:
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?

Thanks. I've finally got around to ask that question.

See https://mathhelpboards.com/calculus-10/sum-powers-limit-via-riemann-sums-23664.html
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K