MHB Prove the lim n→∞ (1^1+2^2+3^3+....+(n−1)^(n−1)+n^n)/(n^n)=1.

  • Thread starter Thread starter lfdahl
  • Start date Start date
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove

$$\lim_{{n}\to{\infty}}\frac{1^1+2^2+3^3+...+(n-1)^{n-1}+n^n}{n^n} = 1.$$
 
Mathematics news on Phys.org
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
 
Last edited:
June29 said:
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?
 
lfdahl said:
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?

Thanks. I've finally got around to ask that question.

See https://mathhelpboards.com/calculus-10/sum-powers-limit-via-riemann-sums-23664.html
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top