MHB Proving Divisibility: Does a^n Divide b^n Imply a Divides b?

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wave)

I am looking at the following exercise:

Show that $a^n \mid b^n \Rightarrow a \mid b$.

According to my notes,it is like that:

Let $a^n \mid b^n$.

Let $d=(a,b)$

Then, $a=d \cdot a_1 \\ b=d \cdot b_1$

$$(a_1,b_1)=1$$

$$b^n=k \cdot a^n, \text{ for a } k \in \mathbb{Z}$$

$$d^n \cdot b_1^n=k \cdot d^n \cdot a_1^n \Rightarrow b_1^n=k \cdot a_1^n$$

Therefore, $$ a_1 \mid b_1^n=\underset{n}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \overset{(a_1,b_1)=1}{\Rightarrow} a_1 \mid \underset{n-1}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid \underset{n-2}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid b_1$$

So,we conclude that $b_1=l \cdot a_1, l \in \mathbb{Z}$

$$d \cdot b_1=l \cdot d \cdot a_1 \Rightarrow b \mid a \Rightarrow a \mid b$$

But...is it right?? (Thinking) We show that $(a_1,b_1)=1$ and then we conclude that $a_1 \mid b_1$... (Wasntme) :confused:
 
Mathematics news on Phys.org
evinda said:
But...is it right?? (Thinking) We show that $(a_1,b_1)=1$ and then we conclude that $a_1 \mid b_1$... (Wasntme) :confused:

Hi! (Happy)

Then that must mean that $a_1=1$ doesn't it? (Thinking)
 
I like Serena said:
Hi! (Happy)

Then that must mean that $a_1=1$ doesn't it? (Thinking)

Oh,yes! (Nod) So,the solution is right,or not?? (Thinking)
 
evinda said:
$$d \cdot b_1=l \cdot d \cdot a_1 \Rightarrow b \mid a \Rightarrow a \mid b$$

evinda said:
Oh,yes! (Nod) So,the solution is right,or not?? (Thinking)

Almost.
But from $d \cdot b_1=l \cdot d \cdot a_1$ we cannot conclude that $b \mid a$. (Doh)
It's a good thing we can conclude that $a \mid b$! (Mmm)
 
I like Serena said:
Almost.
But from $d \cdot b_1=l \cdot d \cdot a_1$ we cannot conclude that $b \mid a$. (Doh)
It's a good thing we can conclude that $a \mid b$! (Mmm)

Oh,sorry! (Blush)(Blush) I accidentally wrote it like that.I wanted to write:

$$d \cdot b_1=l \cdot d \cdot a_1 \Rightarrow b=l \cdot a \Rightarrow a \mid b$$

Thank you very much! (Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
22
Views
5K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
15
Views
21K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
6
Views
4K
Replies
4
Views
1K
Back
Top