MHB Proving Divisibility with the Power of 5

AI Thread Summary
The discussion focuses on proving that for unequal integers \( a, b, c \), the expression \( (a-b)^5 + (b-c)^5 + (c-a)^5 \) is divisible by \( 5(a-b)(b-c)(c-a) \). The proof utilizes polynomial functions, specifically defining \( S_5, S_3, \) and \( S_2 \) to relate these expressions. It is established that \( S_3 = 3(a-b)(b-c)(c-a) \) due to the condition \( (a-b) + (b-c) + (c-a) = 0 \). The final conclusion is that \( S_5 = 5(a-b)(b-c)(c-a) \frac{S_2}{2} \), with \( S_2 \) being even, confirming the divisibility. This mathematical exploration highlights the interplay between polynomial identities and divisibility in number theory.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
 
Mathematics news on Phys.org
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$
 
kaliprasad said:
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$

Sorry for the late reply, kaliprasad and thanks for participating!:o

I like your solution because of the way you introduced a polynomial function for the problem and well done!(Sun)
 
anemone said:
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.
 
caffeinemachine said:
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.

Hey caffeinemachine,

Thanks for participating and that's another trick for me to learn today!(Sun)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top