MHB Proving Divisibility with the Power of 5

Click For Summary
The discussion focuses on proving that for unequal integers \( a, b, c \), the expression \( (a-b)^5 + (b-c)^5 + (c-a)^5 \) is divisible by \( 5(a-b)(b-c)(c-a) \). The proof utilizes polynomial functions, specifically defining \( S_5, S_3, \) and \( S_2 \) to relate these expressions. It is established that \( S_3 = 3(a-b)(b-c)(c-a) \) due to the condition \( (a-b) + (b-c) + (c-a) = 0 \). The final conclusion is that \( S_5 = 5(a-b)(b-c)(c-a) \frac{S_2}{2} \), with \( S_2 \) being even, confirming the divisibility. This mathematical exploration highlights the interplay between polynomial identities and divisibility in number theory.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
 
Mathematics news on Phys.org
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$
 
kaliprasad said:
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$

Sorry for the late reply, kaliprasad and thanks for participating!:o

I like your solution because of the way you introduced a polynomial function for the problem and well done!(Sun)
 
anemone said:
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.
 
caffeinemachine said:
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.

Hey caffeinemachine,

Thanks for participating and that's another trick for me to learn today!(Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
951