MHB Proving Divisibility with the Power of 5

AI Thread Summary
The discussion focuses on proving that for unequal integers \( a, b, c \), the expression \( (a-b)^5 + (b-c)^5 + (c-a)^5 \) is divisible by \( 5(a-b)(b-c)(c-a) \). The proof utilizes polynomial functions, specifically defining \( S_5, S_3, \) and \( S_2 \) to relate these expressions. It is established that \( S_3 = 3(a-b)(b-c)(c-a) \) due to the condition \( (a-b) + (b-c) + (c-a) = 0 \). The final conclusion is that \( S_5 = 5(a-b)(b-c)(c-a) \frac{S_2}{2} \), with \( S_2 \) being even, confirming the divisibility. This mathematical exploration highlights the interplay between polynomial identities and divisibility in number theory.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
 
Mathematics news on Phys.org
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$
 
kaliprasad said:
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$

Sorry for the late reply, kaliprasad and thanks for participating!:o

I like your solution because of the way you introduced a polynomial function for the problem and well done!(Sun)
 
anemone said:
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.
 
caffeinemachine said:
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.

Hey caffeinemachine,

Thanks for participating and that's another trick for me to learn today!(Sun)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top