Proving Divisibility with the Power of 5

Click For Summary

Discussion Overview

The discussion revolves around proving the divisibility of the expression $(a-b)^5+(b-c)^5+(c-a)^5$ by $5(a-b)(b-c)(c-a)$ for unequal integers $a, b, c$. The scope includes mathematical reasoning and exploration of polynomial functions related to the problem.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant proposes that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$ and introduces the notation $S_5$, $S_3$, and $S_2$ to analyze the expression.
  • Another participant appreciates the introduction of a polynomial function in the solution, indicating a positive reception to the approach taken.
  • A participant references a previous thread to support their argument, stating that $\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$ and deriving that $S_3=3(a-b)(b-c)(c-a)$ based on the condition that $(a-b)+(b-c)+(c-a)=0$.
  • It is noted that $S_5$ can be expressed as $5(a-b)(b-c)(c-a)\frac{S_2}{2}$, leading to the conclusion that since $2$ divides $S_2$, the divisibility claim holds.

Areas of Agreement / Disagreement

The discussion does not indicate any disagreement; however, it does not establish a consensus on the proof's validity as participants are still exploring the reasoning and implications of the claims made.

Contextual Notes

Participants rely on previous discussions and specific properties of polynomial functions, but the assumptions and steps leading to the conclusion are not fully resolved or universally accepted.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
 
Mathematics news on Phys.org
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$
 
kaliprasad said:
Let us put $f(x) = (x-b)^5 + (b-c)^5 + (c-x)^5$
Putting x = b we get f(b) = 0
so (x-b) is a factor
so a-b is a factor of $(a-b)^5 + (b-c)^5 + (c-a)^5$

similarly we have (b-c) and (c-a) are factors

now $(a-b)^5 = a^5 – 5a b^4 + 10a^2b^3 – 10 a^3 b^2 +5 a^4 b – b^5 = a^5 – b^5 + 5m$ where $m = - a b^4 + 2a^2b^3 – 2 a^3 b^2 + a^4 b b^4$
similarly $(b-c)^5 = b^5 – c^5 + 5n$
$(c-a)^5 = c^5 – a^5 + 5k$
Adding we get $(a-b)^5 + (b-c)^5 + (c-a)^5 = 5 (m+n+k)$

So $(a-b)^5 + (b-c)^5 + (c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$

Sorry for the late reply, kaliprasad and thanks for participating!:o

I like your solution because of the way you introduced a polynomial function for the problem and well done!(Sun)
 
anemone said:
Given unequal integers $a, b, c$ prove that $(a-b)^5+(b-c)^5+(c-a)^5$ is divisible by $5(a-b)(b-c)(c-a)$.
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.
 
caffeinemachine said:
Let $S_5=(a-b)^5+(b-c)^5+(c-a)^5$, $S^3=(a-b)^3+(b-c)^3+(c-a)^3$ and $S_2=(a-b)^2+(b-c)^2+(c-a)^2$.

From this thread http://mathhelpboards.com/challenge-questions-puzzles-28/prove-%5E5-b%5E5-c%5E5-5%3D-%5E3-b%5E3-c%5E3-3-%2A-%5E2-b%5E2-c%5E2-2-a-8276.html we know that

$$\frac{S_5}{5}=\frac{S_3}{3}\frac{S_2}{2}$$.

Note that since $(a-b)+(b-c)+(c-a)=0$, we have $S_3=3(a-b)(b-c)(c-a)$.

Thus $$S_5=5(a-b)(b-c)(c-a)\frac{S_2}{2}$$.

Clearly $2$ divides $S_2$ and thus we are done.

Hey caffeinemachine,

Thanks for participating and that's another trick for me to learn today!(Sun)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
972
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K