Proving Equivalence of $g' \in Hg$, $g'g^{-1} \in H$, and $Hg = Hg'$

  • Context: MHB 
  • Thread starter Thread starter NoName3
  • Start date Start date
  • Tags Tags
    Equivalence
Click For Summary
SUMMARY

The discussion establishes the equivalence of three statements regarding elements of a group and its subgroup: (a) $g' \in Hg$, (b) $g'g^{-1} \in H$, and (c) $Hg = Hg'$. It demonstrates that if $g' = hg$ for some $h \in H$, then $g'g^{-1} = h$, confirming that $g'g^{-1} \in H$. The proof further shows that $Hg \subseteq Hg'$ and $Hg' \subseteq Hg$, leading to the conclusion that $Hg = Hg'$. The equivalence relation defined by $g \sim g'$ is also discussed, highlighting its significance in group theory.

PREREQUISITES
  • Understanding of group theory concepts, specifically subgroups and cosets.
  • Familiarity with equivalence relations in mathematical structures.
  • Knowledge of the properties of group operations and their implications.
  • Basic understanding of vector spaces and their geometric interpretations.
NEXT STEPS
  • Study the properties of cosets in group theory, focusing on Lagrange's Theorem.
  • Explore equivalence relations in depth, particularly in the context of group actions.
  • Learn about the geometric interpretations of groups, such as the Euclidean plane and vector addition.
  • Investigate subgroup properties and their applications in abstract algebra.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the foundational concepts of group theory and its applications in various mathematical contexts.

NoName3
Messages
24
Reaction score
0
Let $H$ be be a subgroup of a group $G$. Let $g'$ and $g$ elements of $G$. Prove that the following are equivalent: $(a)$ $g' \in Hg$, $(b)$ $g'g^{-1} \in H$, and $(c)$ $Hg = Hg'$.

$g' \in Hg$ means $g' = hg$ for some $g \in G$ and $h \in H$. And $g' = hg \implies g'g^{-1} = hgg^{-1} = h$. But $h \in H$ so $g'g^{-1} \in H$.

So $(a) \implies (b)$. I can't progress. For a moment I thought I had it, then I lost it!
 
Last edited:
Physics news on Phys.org
Suppose $gg'^{-1} \in H$, say:

$gg'^{-1} = h$.

Then $g = hg'$. Does it not follow that for any other $h_1 \in H$, that:

$h_1g = h_1(hg')$?

Use this to show $Hg \subseteq Hg'$.

Can you show likewise that $Hg' \subseteq Hg$?
 
Deveno said:
Suppose $gg'^{-1} \in H$, say:

$gg'^{-1} = h$.

Then $g = hg'$. Does it not follow that for any other $h_1 \in H$, that:

$h_1g = h_1(hg')$?

Use this to show $Hg \subseteq Hg'$.

Can you show likewise that $Hg' \subseteq Hg$?
Thank you.

So let $x = h_1g$. Then $x = h_1hg' \in H$ because since $h_1, h \in H$ we have $h_1 h \in H$. Therefore $Hg \subseteq Hg'$. For the converse, suppose $h_2 \in H$ and let $y = h_2 g' = h_2h^{-1}g \in H$ because since $h_2 , h^{-1} \in H$ we have $h_2 h^{-1} \in H$. Therefore $Hg' \subseteq Hg$. Hence $Hg = Hg'.$
 
Last edited:
NoName said:
Thank you.

So let $x = h_1g$. Then $x = h_1hg' \in H$ because since $h_1, h \in H$ we have $h_1 h \in H$. Therefore $Hg \subseteq Hg'$. For the converse, suppose $h_2 \in H$ and let $y = h_2 g' = h_2h^{-1}g \in H$ because since $h_2 , h^{-1} \in H$ we have $h_2 h^{-1} \in H$. Therefore $Hg' \subseteq Hg$. Hence $Hg = Hg'.$

Another way to do this is using the fact that either:

a) $Hg = Hg'$ -or-
b) $Hg \cap Hg' = \emptyset$

in which case it suffices to show that $Hg \cap Hg' \neq \emptyset$ to show the two cosets are the same.

Why are a) and b) true?

Because:

$Hg = Hg' \iff gg'^{-1} \in H$, and:

$g \sim g' \iff gg'^{-1} \in H$ is an EQUIVALENCE RELATION on $G$ (called "congruence modulo $H$").

You have seen this before, although you probably did not recognize it at the time.

The Euclidean plane:

$\{(x,y):x,y \in \Bbb R\}$

is a group, under the operation:

$(x,)\ast(x',y') = (x+x',y+y')$ (the normal vector addition).

A line through the origin, of slope $m$, is a SUBGROUP:

$L_m = \{(x,y) \in \Bbb R^2: y = mx\}$ (this is all points of the form $(x_0,mx_0)$).

The slope-intercept form of a line:

$y = mx + b$

Is a "congruence class" of $L_m$, since if we take two such points, and subtract (this is $pp'^{-1}$ for our 2-vectors and the operation of vector addition): we have:$(x_2,mx_2 + b) - (x_1,mx_1 + b) = (x_2-x_1,m(x_2-x_1)) \in L_m$.

So we think of the line $y = mx + b$ as "$L_m$ translated (up) by $b$", in much the same way:

$Hg$ is $H$ "translated" (multiplicatively) by $g$.

In other words, lines not through the origin are cosets of a parallel line through the origin (thinking about cosets this way makes Lagrange's Theorem make more "sense", because we see cosets are in some sense, "parallel", like equal slices of a rectangular cake), to see if two group elements are "in the same slice" we do the group analogy of subtraction, which is, evaluate $gg'^{-1}$, and see if it lies in the "home slice" (the one that contains the identity).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
684
  • · Replies 13 ·
Replies
13
Views
1K
Replies
8
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
7K