MHB Proving $f(x)=0$ Has No Integer Solution with Integer Coefficients

AI Thread Summary
A polynomial \(f(x)\) with integer coefficients has \(f(0)\) and \(f(1)\) as odd numbers, indicating that the constant term is odd and there is an even number of odd coefficients among the non-constant terms. This structure ensures that for any integer \(x\), \(f(x)\) remains odd. Consequently, since odd numbers cannot equal zero, \(f(x) = 0\) cannot have any integer solutions. Therefore, it is proven that \(f(x) = 0\) has no integer solutions.
juantheron
Messages
243
Reaction score
1
A polynomial $f(x)$ has Integer Coefficients such that $f(0)$ and $f(1)$ are both odd numbers. prove that $f(x) = 0$ has no Integer solution
 
Mathematics news on Phys.org
jacks said:
A polynomial $f(x)$ has Integer Coefficients such that $f(0)$ and $f(1)$ are both odd numbers. prove that $f(x) = 0$ has no Integer solution


There are details you may need to fill in yourself but:

\(f(0)\) odd implies that the constant term is odd

then \(f(1)\) odd implies that there are an even number of odd coeficients of the non constant terms.

So if \(x \in \mathbb{Z}\) then \(f(x)\) is odd and so cannot be a root of \(f(x)\) CB
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top