MHB Proving lim sqrt(n) alpha^n is 0

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

I want to prove that $\lim \sqrt(n) \alpha ^n \rightarrow 0$ whenever $0 <\alpha < 1$. I got the following proof:

(1) Write $\alpha$ as $\alpha = 1/x$ where $x > 1$.
(2) $\sqrt{n} \alpha ^n = \displaystyle \frac{\sqrt{n}}{(1+x)^n}\leq\frac{\sqrt{n}}{1+nx}=\frac{1}{\frac{1}{\sqrt{n}}+x\sqrt{n}}\leq\frac{1}{x\sqrt{n}}\rightarrow 0$ as $n\rightarrow \infty$.

Is the proof I provided correct?

Thanks! :)
 
Last edited by a moderator:
Physics news on Phys.org
Re: Proving $\lim \sqrt(n) \alpha ^n \rightarrow 0$

OhMyMarkov said:
Hello everyone!

I want to prove that $\lim \sqrt(n) \alpha ^n \rightarrow 0$ whenever $0 <\alpha < 1$. I got the following proof:

(1) Write $\alpha$ as $\alpha = 1/x$ where $x > 1$.
(2) $\sqrt{n} \alpha ^n = \displaystyle \frac{\sqrt{n}}{(1+x)^n}\leq\frac{\sqrt{n}}{1+nx}=\frac{1}{\frac{1}{\sqrt{n}}+x\sqrt{n}}\leq\frac{1}{x\sqrt{n}}\rightarrow 0$ as $n\rightarrow \infty$.

Is the proof I provided correct?

Thanks! :)
The idea seems correct, but in line (1) you should have written $\alpha = 1/(1+x)$ where $x > 0$.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...

Similar threads

Replies
3
Views
2K
Replies
17
Views
1K
Replies
7
Views
2K
Replies
9
Views
2K
Replies
29
Views
3K
Replies
4
Views
3K
Replies
4
Views
3K
Back
Top